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Lp spaces and other preliminaries Throughout, let (Ω,Σ,P) be a probability space, and unless specified
otherwise, let X ,Y,Z,S be standard Borel spaces. Recall

L0(Ω;S) := {f : Ω → S measurable}

∥f∥Lp(Ω,Σ,P) :=

(∫
|f(ω)|pdP(ω)

) 1
p

for all p ∈ [1,∞)

Lp((Ω,Σ,P);S) := {f ∈ L0 : ∥f∥Lp(Ω,Σ,P) < ∞}
Let f ∼P g be an equivalence relation that holds for f, g ∈ L0 if P(f ̸= g) = 0

Lp((Ω,Σ,P);S) := Lp((Ω,Σ,P);S)/ ∼P for all p ∈ {0} ∪ [1,∞).

Both L1 and L1 are Banach spaces, L2 and L2 are Hilbert spaces with the inner product ⟨f, g⟩ =
∫
fgdP, and

Lq ⊂ Lp for 1 ≤ p < q < ∞ (or p = 0). We let B(X ) denote the Borel σ-algebra of X , and for X ∈ L0(Ω;X ) we
let σ(X) := {X−1(B) : B ∈ B(X )}. For B ⊆ Ω define σ(B) := {∅, B,Bc,Ω}, and the trace σ-algebra is defined
as Σ∩B := {S ∩B : S ∈ Σ}. Given a measurable space X , the set of probability measures on X is denoted with
P(X ).

Conditional expectation (given a σ-algebra) Let (X,Y ) ∈ L2((Ω,Σ,P);X×Y), f ∈ L1(X×Y,P(X,Y );S),
then

E[f(X,Y )] :=

∫
f(x, y)dP(x, y)

E[Y |σ(X)] := argmin
E∈L2((Ω,σ(X),P);Y)

E[(E − Y )2] ∈ L2((Ω, σ(X),P);Y).

Since L2((Ω;σ(X),P);Y) is a closed linear subspace of the Hilbert space L2((Ω,Σ,P);Y), the element E[Y |σ(X)]
exists and is unique. If (X,Y ) ∈ L1((Ω,Σ,P);X × Y), one can use the L2 definition and the density of L2 in L1

to define E[Y |σ(X)] as the unique element in L1((Ω, σ(X),P);Y) with∫
B

E[Y |σ(X)](ω)dP(ω) =
∫
B

Y (ω)dP(ω) for all B ∈ σ(X).

For more information, see e.g. Kallenberg (2002), Theorem 5.1.

Conditional expectation (given a random variable) Let (X,Y ) ∈ L1((Ω,Σ,P);X × Y) be given. Consid-
ering the equivalence class E[Y |σ(X)] ∈ L1((Ω,Σ,P);Y), by the Doob-Dynkin lemma (Kallenberg, 2002, Lemma
1.13) there exists a Doob-Dynkin representation1 g ∈ L0(X ;Y) such that

E[Y |σ(X)](ω) = g(X(ω)) P-a.s.

and that is P(X)-a.e. uniquely determined; we use this function g to define

E[Y |X] := (x 7→ E[Y |X = x]) := g ∈ L1((X ,P(X));Y).

Note that E[Y |X = X] = g(X) = E[Y |σ(X)].

Conditional distribution Let (X,Y ) ∈ L1((Ω,Σ,P);X ×Y). For B ∈ B(Y), define the conditional probability
of Y ∈ B given X as a version of the conditional expectation

P(Y ∈ B|X) := E[1B(Y )|X] ∈ L1((X ,P(X)); [0, 1]).

For an arbitrary measurable space Y it is not necessarily the case that for P(X) almost all x ∈ X , the map
B 7→ P(Y ∈ B|X = x) is σ-additive, hence a probability measure. A well known result (see e.g. Kallenberg
(2002), Theorem 5.3) is that if Y is standard Borel, then the map

(B, z) 7→ P(Y ∈ B|X = x)

is a Markov kernel that is P(X) a.e. uniquely defined, i.e.

P(Y |X) ∈ L0((X ,P(X));P(Y)).

This is referred to as the (regular) conditional distribution. One refers to P(Y |X) ∈ L0(X ;P(Y)) as a version of
the conditional distribution.

1non-standard terminology
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Disintegration Let (X,Y ) ∈ L1((Ω,Σ,P);X×Y), then the conditional distribution P(Y |X) ∈ L0((X ,P(X));P(Y))
can be used to disintegrate the product measure P(X,Y ) (see e.g. Kallenberg (2002), Theorem 5.4), i.e.

P(X ∈ A, Y ∈ B) =

∫
A

P(Y ∈ B|X = x)dP(x) for all A ∈ B(X ), B ∈ B(Y). (1)

Even though the Markov kernel P(Y |X) is a equivalence class with respect to P(X), the equality holds without
any almost-surely conditions. If we let f ∈ L1(X × Y,P(X,Y );S), the above can be used as follows:

E[f(X,Y )] =

∫
E[f(X,Y )|X = x]dP(x) =

∫ ∫
f(x, y)dP(y|x)dP(x).

For a probability measure P(X,Y, Z) we can obtain P(Y |X,Z) ∈ L0((X × Z,P(X,Z));P(Y)) either by
conditioning on (X,Z) or by iterated disintegration: either by first conditioning on X and then on Z, or by first
conditioning on Z and then on X. For a proof, see Kallenberg (2017), Theorem 1.27.

Conditional expectation (given an event) Let (X,Y ) ∈ L1((Ω,Σ,P);X × Y). For B ∈ B(X ) with
P(X ∈ B) > 0, define

E[Y |X ∈ B] :=
1

P(X ∈ B)
E[1{X∈B}Y ] =

1

P(X ∈ B)

∫
B

E[Y |X = x]dP(x), (2)

where E[Y |X = x] is the Doob-Dynkin representation. Note that if P(X = x) > 0 we indeed get E[Y |X ∈ {x}] =
E[Y |X = x]. This relates to conditioning on a σ-algebra via

E[Y |σ({X ∈ B})] = E[Y |X ∈ B]1{X∈B} + E[Y |X /∈ B]1{X/∈B} ∈ L1((Ω, σ({X ∈ B}),P);Y).

If P(X ∈ B) = 0 we have E[Y |σ(X ∈ B)] = E[Y |X /∈ B] P-a.s., so there is no obvious way to define a conditional
expectation given an event of probability zero in terms of a conditional expectation given a σ-algebra. When
B = {x} with P(X = x) = 0 we define E[Y |X ∈ {x}] := E[Y |X = x], with the r.h.s. being the Doob-Dynkin
representation.

Conditional expecation (given a radom variable and an event) Let (X,Y, Z) ∈ L1((Ω,Σ,P);X ×Y×Z).
Define for P(X)-almost all x ∈ X the following conditional expectation

E[Y |X ∈ {x}, Z] := E[Y |X = x, Z] ∈ L1((X ,P(Z|X = x));Y),

where the r.h.s. E[Y |X,Z] ∈ L1((X × Z,P(X,Z));Y) is the Doob-Dynkin representation. This curries the
function E[Y |X,Z] into (x 7→ E[Y |X = x, Z]) ∈ L1((X ,P(X));L1((Z,P(Z|X = x));Y)). That E[Y |X ∈
{x}, Z] ∈ L1((X ,P(Z|X = x));Y) follows since∫

∥E[Y |X = x, Z = ·]∥L1(X ,P(Z|X=x);Y)dP(x) =
∫ ∫

E[Y |X = x, Z = z]dP(z|x)dP(x)

=

∫
|E[Y |X = x, Z = z]|dP(x, z) < ∞

=⇒ P(X ∈ {x ∈ X : ∥E[Y |X = x, Z = ·]∥L1(X ,P(Z|X=x);Y) < ∞}) = 1,

or in other words, E[Y |X = x, Z] ∈ L1((X ,P(Z|X = x));Y) for P(X)-almost all x ∈ X .

Let B ∈ B(X ) such that P(X ∈ B) > 0. To define the conditional expectation E[Y |X ∈ B,Z], we consider
the random variable 1B ◦X, consider the Doob-Dynkin representation E[Y |1B ◦X,Z], and define

E[Y |X ∈ B,Z] := E[Y |1B ◦X = 1, Z] ∈ L1((Z,P(Z|X ∈ B));Y).

That this conditional expectation is P(Z|X ∈ B)-a.e. uniquely defined follows from the preceding proof that
E[Y |1B ◦X = 1, Z] ∈ L1((X ,P(Z|1B ◦X = 1));Y) and that P(Z|1B ◦X = 1) = P(Z|X ∈ B).

For this type of conditional expectation we have an expression that is similar to equation 2: for B ∈ B(X )
with P(X ∈ B) > 0, one can use a conditional version of the disintegration of equation 1 to verify that we have

P(Y,X ∈ B|Z) = P(Y |X ∈ B,Z)P(X ∈ B|Z) P(Z)-a.s. (3)

and hence also

E[Y |X ∈ B,Z] =
1

P(X ∈ B|Z)

∫
B

E[Y |X = x, Z]dP(x|Z) P(Z)-a.s.
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The Borel-Kolmogorov paradox What precisely is the Borel-Kolmogorov paradox is unclear (to me), but
it seems to consist of the observation that reparametrization of the state space changes conditional probabilities,
and that conditional probabilities given an event of measure zero cannot be unambiguously approximated by
probabilities given an event of positive probability. When uniformly sampling (X,Y ) pairs on the unit disc
{(x, y) ∈ [−1, 1] × [−1, 1] : x2 + y2 ≤ 1}, one can consider the conditional probability P(|Y | ≥ 1

2 |X = 0) = 1
2 .

When transforming these (X,Y ) points to their polar coordinates (Φ, R), we intuitively have coincidence of
the conditional events {|Y | ≥ 1

2 |X = 0} ⇐⇒ {R ≥ 1
2 |Φ = π

2 }, and one might be surprised by the fact that
P(|Y | ≥ 1

2 |X = 0) = 1
2 ̸= 3

4 = P(R ≥ 1
2 |Φ = π

2 ).
2

Some sources (the Wikipedia (2023) page on this paradox, for example) ‘explain’ this paradox by defining
the conditional probabilities in terms of a limiting procedure, namely

P(|Y | ≥ 1
2 |X = 0) = lim

ε↓0

P(|Y | ≥ 1
2 |X ∈ [−ε, ε])

P(X ∈ [−ε, ε])

P(R ≥ 1
2 |Φ = π

2 ) = lim
ε↓0

P(R ≥ 1
2 |Φ ∈ [π2 − ε, π

2 + ε])

P(Φ ∈ [π2 − ε, π
2 + ε])

,

(4)

where the r.h.s. probabilities can be explicitly calculated since the conditioning event has positive probability.
The difference of the two l.h.s. probabilities is then explained by the difference of the limiting procedures: the
conditioning sets are ‘straight vertical slices’ for the (X,Y ) parametrization and sectors for (Φ, R).

Defining conditional distributions in terms of such limiting procedures is not straightforward. Rao (2005),
section 3.2, formulates sets A,B and measure P such that for determining P(A|B) with P(B) = 0, there are
infinitely many decreasing sequences Bm

1 ⊇ Bm
2 , .... ⊇ B with m ∈ R for which limn→∞ P(A|Bm

n ) exists, but
depends on m. This ambiguity is the reason that Kallenberg (2002); Rao (2005) (p.78) and others define the
conditional distribution via the Doob-Dynkin representation.

There still is a relation between the limiting operations of equation (4) and conditional distributions
(defined via Doob-Dynkin). The Besicovitch differentiation theorem states that for a metric space (X , d)
and Borel measure P on X (that satisfy so called Besicovitch or Vitali covering conditions) we have f(x) =
limε↓0

1
P(Bε(x))

∫
Bε(x)

f(x′)dP(x′) P-a.e. for all f ∈ L1
loc(P), where L1

loc denotes locally integrable L1 functions.3

When the criteria of this theorem are met, we have the P(X)-a.s. equality

E[Y |X = x] = lim
ε↓0

1

P(X ∈ Bε(x))

∫
Bε(x)

E[Y |X = x′]dP(x′) = lim
ε↓0

E[Y |X ∈ Bε(x)]

P(X ∈ Bε(x))
. (5)

Rigot (2022) for example proves (Theorem 4.3) that the Besicovitch differentiation theorem holds for any
probability measure P on Rn with the Euclidean distance. See Rigot (2022) for more information on Besicovitch
theorem, and Rao (2005), sections 3.4, 4.5 and 7.6 for more general information on Borel-Kolmogorov type
paradoxes, differentiation of measures.
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galingam, N., Ambrosio, L., Franchi, B., Markina, I., and Serra Cassano, F., editors, New Trends on Analysis
and Geometry in Metric Spaces, Lecture Notes in Mathematics, pages 93–116, Cham. Springer International
Publishing.

Wikipedia (2023). Borel–Kolmogorov paradox. Wikipedia.

2It should however not be surprising that when picking Φ and R uniformly, one does not get a uniform distri-
bution on the unit disc. To become convinced, one can compare the (X,Y ) and (Φ, R) plots of the following R
code: n <- 5000; df<-data.frame(X=runif(n,-1,1),Y=runif(n,-1,1)); df<-cbind(df,data.frame(R=(df$X^2+df$Y^2)^(1/2),
Phi=atan(df$Y/df$X))); df<-df[df$R<=1,]; plot(df$X,df$Y); plot(df$Phi,df$R).

3For X = R, d the Euclidean distance and P the Lebesgue measure, this is known as the Lebesgue differentiation theorem.
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