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tl:dr: We map a system of SDEs to a Dynamic SCM, which naturally facilitates causal

reaioning, causal effect identification and causal discovery in a wide class of dynamical Implications (overview) (3) Constraint-based Causal Discovery
systems.
Equipping SDEs with causal semantics The following existing notions and results for SCMs naturally apply to DSCMs: Example FCl is sound and complete for simple DSCMs [7], and outputs the PAG:
, . , o 1. The graph of the DSCM, o-separation, and a Global Markov property
Example (System of SDEs) Consider the system of Stochastic Differential Equations: 9 Caues] oed et ean
(Xl(t) =&+ fot g1(s—, X1, X3)dWi(s) 3. Constraint-based causal discovery
D 4 Xo(t) =&+ f()t ga(s—, X1, Xo)dWi(s) Additionally, we investigate:
. B ) B |
Xo(t) =&+ fOt gals = X, Xs)dNs(s) 4. Time-evaluations to map continuous time DSCMs to discrete time DSCMs
\X4(t) =&+ [, ga(s—, X4)dXs(s).

(This example is based on an independence oracle.)

Theorem 1 (DSCM induced by SDE) Under regularity assumptions, a system of SDEs (1) Markov property Testing independence of sample paths (e.g. X, Lp Xs|Xs) is an active area of research
. . . . . -5 1 P23 2 ’
D can be interpreted as a Dynamic (SCI\/I Mp with structural equations Definition (The graph G(M)) See [1]. with first results [4. 5],
X1 = fil&, X3, W) @
Xy = X, W . :
Mp: 2= A&, X1, ) ' (4) Time-evaluations of DSCMs
X3 — f3(€37 X27 N3> ’
\X4 = f4(&, X3) Example: @ @ @ @ Definition (Time-evaluation) Given time indices s,t € T with s < ¢, the time-evaluated
with & € R, X,,W,;, N, € D(T, R) and exogenous distributions P(&,), P(W;), P(N,). DSCM M (s, Is @ DSCM with endogenous variables for evaluations at s and ¢.
This result builds upon a representation theorem by [8]. The space of sample paths @ @ @
D(T,R) is the (separable complete metric) space of cadlag functions: W G(M ) Wi
.f . G(M) ev(s,t))-
. Definition (o-separation, [1, 2]) \
The q—separahon.cmter!on S a generahsapgn of d—separaﬁqn to.cychc.graphs. Works £ — X, £ —» X1[0’S> X > Xl[s,t) — X! —» Xl{m
t just like d-separation, with one extra condition: a path v — ¢ — 7 — w Is o-blocked by
v Iff © and j§ are not in the same strongly connected component. ( ) — ( )>< ( )>< ( )
. _ d o o f — > X 52 — X[()’S> _ XS — X‘{Sﬂf) s X; _ X‘[t,ﬂ
Definition (Dynamic SCM) Example: & L XulXo & L XulXo & L X|X; 2 2 2 2 2
G(M) G(M) G(M) / l l 1
Given a continuous time index T = |0,7T] or discrete time index T = {1,...,T}, a W 0,s) s [s,1) t t,T]
) RREY X, — X3 — X — X! — X5
Dynamic Structural Causal Model is an SCM (as in [1]): Theorem (Global Markov Property, [1, 2]) W A3 i 3 ’ 3 ) 3

For simple DSCM M with distribution P( Xy, Xy), graph G(M) and (not necessarily

disioint) sets A, B.C' C V U W, we have (For graphical appeal we assume X; and X, to be temporally Markov.)

M = <%U%7WOUW]?7X757JC7P5>

1. Endogenous parameters 1}, endogenous processes V, Al B 1C = X4l Xp|Xc. Conjecture: Local independence |6] (i.e. continuous-time Granger-noncausality) can be
2. Exogenous parameters Wy, GTS%GHOUS D"OC‘STSGS Wy - - g characterised in terms of time-evaluations of DSCMs:
3. Standard Borel spaces X = RVl x D(T,R)!Y»l and € = Rl x D(T, R)"» 0,t)1 +[0.t
P (T, R) (7, R) X%LXL’)]Xé’)forallteT — X4 A Xp|Xc
4. Structural equations f, : X x &€ — X, for all v € V (that are adapted for v € V)))
5. Exogenous distribution Pg = (@i, P(Xw)) ® (@weWpP(Xw)) (2) Causal Effect Identification
The rules of do-calculus are valid for Simple DSCMs [3]’ SO We can reason about 1] S. Bonge(rs), P. Forre, J. Peters, and J.M. Mooij. Foundations of structural causal models with cycles and latent variables. Ann.
. Stat., 49(5), 2021.
Definition (Intervention) unconfoundedness: 2] P. Forré and J.M. Mooij. Markov Properties for Graphical Models with Cycles and Latent Variables, 2017.
. . [P)(X4’ dO(&)) — IP)(X4’£1) [3] P. Forré and J.M. Mooij. Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias. In PMLR, pages
For T C V and xp € X7, the intervened DSCM is 71-80. PMLR, 2020.
fX f (X X ) foeV \ T but we also have adjustment formulae, like backdoor adjustment: [4] AR. Lundborg, R.D. Shah, and J. Peters. Conditional Independence Testing in Hilbert Spaces with Applications to Functional
— Vi AW Data Analysis. J. R. Stat. Soc. Ser. B Methodol., 84(5):1821-1850, 2022
M _ : 4 v v ata ysis. J. R. : . Ser. , ; , .
do(Xr=z7) Xv = Ty ifvoel. P(Xﬂ dO(X1 — xl)) — IP)(X4’X1 = X, W1 — w1>dP(W1 = wl). 5] G. Manten, C. Casolo, E. Ferrucci, SW. Mogensen, C. Salvi, and N. Kilbertus. Signature Kernel Conditional Independence
‘ D(T R) Tests in Causal Discovery for Stochastic Processes, 2024.
6] SW. Mogensen and N. Richard Hansen. Markov equivalence of marginalized local independence graphs. Ann. Stat., 48(1),

The ID algorithm [3] is valid as well.

Definition (Simple DSCM) A DSCM is simple if its structural equations have a uniqgue 2020.
7] J.M. Mooij and Tom Claassen. Constraint-Based Causal Discovery using Partial Ancestral Graphs in the presence of Cycles.

solution under all interventions, giving well-defined distributions P(Xy | do(X7)).
S e DSCM . ic Th | £ e DSCMs | | . der i : In UAI2020, pages 1159-1168. PMLR, 2020.

impic . ' S ;an € Cyclic. € Class Of simple S l_S C‘OSQ under intervention 18] P. Przybytowicz, V. Schwarz, A. Steinicke, and M. Szolgyenyi. A Skorohod measurable universal functional representation of
and marginalisation [1]. The DSCM Mp from Theorem 1 is simple. solutions to semimartingale SDFEs, 2023.
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