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tl;dr: We map a system of SDEs to a Dynamic SCM, which naturally facilitates causal

reasoning, causal effect identification and causal discovery in a wide class of dynamical

systems.

Equipping SDEs with causal semantics

Example (System of SDEs) Consider the system of Stochastic Differential Equations:

D :


X1(t) = ξ1 +

∫ t

0 g1(s−, X1, X3)dW1(s)
X2(t) = ξ2 +

∫ t

0 g2(s−, X1, X2)dW1(s)
X3(t) = ξ3 +

∫ t

0 g3(s−, X2, X3)dN3(s)
X4(t) = ξ4 +

∫ t

0 g4(s−, X4)dX3(s).

Theorem 1 (DSCM induced by SDE) Under regularity assumptions, a system of SDEs

D can be interpreted as a Dynamic SCM MD with structural equations

MD :


X1 = f1(ξ1, X3, W1)
X2 = f2(ξ2, X1, W1)
X3 = f3(ξ3, X2, N3)
X4 = f4(ξ4, X3)

with ξi ∈ R, Xi, Wj, N2 ∈ D(T ,R) and exogenous distributions P(ξi),P(Wj),P(N2).
This result builds upon a representation theorem by [8]. The space of sample paths

D(T ,R) is the (separable complete metric) space of càdlàg functions:

t

y f (t)

Definition (Dynamic SCM)

Given a continuous time index T = [0, T ] or discrete time index T = {1, ..., T}, a
Dynamic Structural Causal Model is an SCM (as in [1]):

M = 〈V0 ∪ Vp, W0 ∪ Wp, X , E , f,PE〉

1. Endogenous parameters V0, endogenous processes Vp

2. Exogenous parameters W0, exogenous processes Wp

3. Standard Borel spaces X = R|V0| × D(T ,R)|Vp| and E = R|W0| × D(T ,R)|Wp|

4. Structural equations fv : X × E → Xv for all v ∈ V (that are adapted for v ∈ Vp)

5. Exogenous distribution PE =
(⊗

w∈W0
P(Xw)

)
⊗

(⊗
w∈Wp

P(Xw)
)

Definition (Intervention)

For T ⊆ V and xT ∈ XT , the intervened DSCM is

Mdo(XT =xT ) :

{
Xv = fv(XV , XW ) if v ∈ V \ T

Xv = xv if v ∈ T .

Definition (Simple DSCM) A DSCM is simple if its structural equations have a unique

solution under all interventions, giving well-defined distributions P(XV | do(XT )).
Simple DSCMs can be cyclic. The class of simple DSCMs is closed under intervention

and marginalisation [1]. The DSCM MD from Theorem 1 is simple.

Implications (overview)

The following existing notions and results for SCMs naturally apply to DSCMs:

1. The graph of the DSCM, σ-separation, and a Global Markov property

2. Causal effect identification

3. Constraint-based causal discovery

Additionally, we investigate:

4. Time-evaluations to map continuous time DSCMs to discrete time DSCMs

(1) Markov property

Definition (The graph G(M)) See [1].
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Definition (σ-separation, [1, 2])
The σ-separation criterion is a generalisation of d-separation to cyclic graphs. Works

just like d-separation, with one extra condition: a path v → i → j → w is σ-blocked by

i iff i and j are not in the same strongly connected component.
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Theorem (Global Markov Property, [1, 2])

For simple DSCM M with distribution P(XV , XW ), graph G(M) and (not necessarily

disjoint) sets A, B, C ⊆ V ∪ W , we have

A ⊥σ
G(M) B | C =⇒ XA ⊥⊥

P
XB | XC.

(2) Causal Effect Identification

The rules of do-calculus are valid for simple DSCMs [3], so we can reason about

unconfoundedness:

P(X4| do(ξ1)) = P(X4|ξ1)
but we also have adjustment formulae, like backdoor adjustment:

P(X4| do(X1 = x1)) =
∫

D(T ,R)
P(X4|X1 = x1, W1 = w1)dP(W1 = w1).

The ID algorithm [3] is valid as well.

(3) Constraint-based Causal Discovery

Example FCI is sound and complete for simple DSCMs [7], and outputs the PAG:
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(This example is based on an independence oracle.)

Testing independence of sample paths (e.g. X1 ⊥⊥P X3|X2) is an active area of research,

with first results [4, 5].

(4) Time-evaluations of DSCMs

Definition (Time-evaluation) Given time indices s, t ∈ T with s < t, the time-evaluated

DSCM Mev(s,t) is a DSCM with endogenous variables for evaluations at s and t.
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(For graphical appeal we assume X1 and X2 to be temporally Markov.)

Conjecture: Local independence [6] (i.e. continuous-time Granger-noncausality) can be

characterised in terms of time-evaluations of DSCMs:

X t
B ⊥⊥ X

[0,t)
A |X [0,t)

C for all t ∈ T ⇐⇒ XA 6→ XB|XC
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