
Dynamic Structural Causal Models

Philip Boeken, Joris M. Mooij

Korteweg-de Vries Institute for Mathematics
Universiteit van Amsterdam

Mercury Machine Learning Lab
Booking.com

Causal Inference for Time Series Data Workshop @ UAI 2024
July 19, 2024



Continuous-time Dynamical Systems
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Dynamic Structural Causal Models
Structural Causal Model:
I Endogenous V , exogenous W
I Outcome spaces XV
I Structural equations XV = fv (XV ,XW )

I Exogenous distribution P(XW )

Main idea: replace static variables by entire sample paths on T = [0,T ].
(Rubenstein et al., 2018)

Static SCM

State space Xv ⊆ R
Variable Xv ∈ R

Structural equation fv : Rm+n → R

Dynamic SCM

Function space Xv = DT ,R
Trajectory Xv ∈ DT ,R or

Xv : T → R
Structural equation fv : Dm+n

T ,R → DT ,R
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From a Structural System of SDEs to a DSCM

D :


X1(t) = X0

1 +
∫ t
0 g1(s−,X1,X3)dW (s)

X2(t) = X0
2 +

∫ t
0 g2(s−,X1,X2)dN(s)

X3(t) = X0
3 +

∫ t
0 g3(s−,X2,X3)dW (s)

X4(t) = X0
4 +

∫ t
0 g4(s−,X4)dX2(s)
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Description of dynamical evolution of states Functional dependencies of trajectories
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=
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DSCM Markov Property

A DSCM is a genuine (cyclic) SCM as in Bongers et al. (2021).

Graph G(M):
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Markov property (Forré and Mooij, 2017):

X1

σ
⊥
G

X4 |X2 =⇒ X1 ⊥⊥
P(XV )

X4 |X2
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Time-splitting, Subsampling
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Time-splitting is invertible, but subsampling is not!
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Results for DSCMs

We can apply existing ‘static’ SCM methods to dynamical systems:

Cyclic causal effect identification:
I Do-calculus (Forré and Mooij, 2020)
I Generalised adjustment formulae (Forré and Mooij, 2020)
I ID algorithm (Forré and Mooij, 2023)

Cyclic constraint-based causal discovery:
I LCD (Cooper, 1997; Forré and Mooij, 2023)
I Y-structures (Mani, 2006; Forré and Mooij, 2023)
I FCI (Spirtes et al., 1995; Forré and Mooij, 2023)
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Causal Effect Identification: Backdoor Adjustment

W

X [0,T ]
1 X [0,T ]

2

P(X2|do(X1 = x)) =
∫

DT ,R

P(X2|X1 = x ,W = w)dP(w)
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Constraint-based Causal Discovery: FCI

Output of FCI with independence oracle:

X1

X2 X3

X4

X0
1

X0
2 X0

3

X0
4

In practice, require conditional independence test for e.g. X1⊥⊥X4 |X2 (Lundborg et al.,
2022; Manten et al., 2024).
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Local Conditional Independence

Let XA 6→ XB | XC denote local conditional independence of XB from XA given XC .

Theorem
For a collapsed DSCM M with no instantaneous effects and independent integrators, G(M)
is a local independence graph and

XA
σ
⊥

G(M)
XB |XC =⇒ XA 6→ XB | XC .
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