UNIVERSITY OF AMSTERDAM

Summary

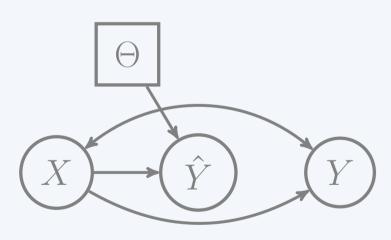
- 1. We model the deployment of a *Decision Support System* (DSS) with a causal model
- 2. which we use in two applications:
- A) Evaluation: we define the *Deployment effect* and *Retraining effect* (Def. 1, 2) as metrics to evaluate the effect of the deployment of a DSS.
- B) **Bias correction**: we specify a *baseline predictor* as suitable prediction model for the DSS, which corrects for *performative bias* (Def. 4) caused by a previous deployment of the DSS.

Estimating these quantities constitutes three domain adaptation tasks (T1, T2, T3).

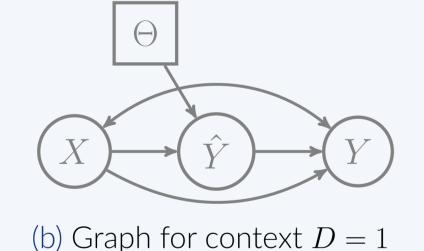
- 3. These tasks (T1, T2, T3) reduce to *a single domain adaptation problem* (Lemma 1), which cannot be solved without imposing extra assumptions (Prop. 1).
- 4. Our proposed solution is to consider a *domain pivot* (Def. 5) which facilitates domain adaptation (Prop. 2).

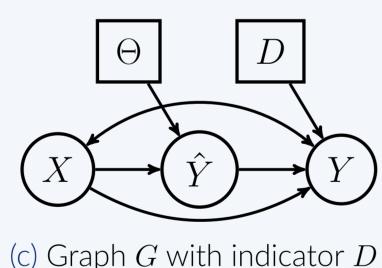
Causal Model of a Decision Support System

- Features X
- Outcome variable Y
- Prediction \hat{Y} using X and parameters Θ
- Deployment indicator D



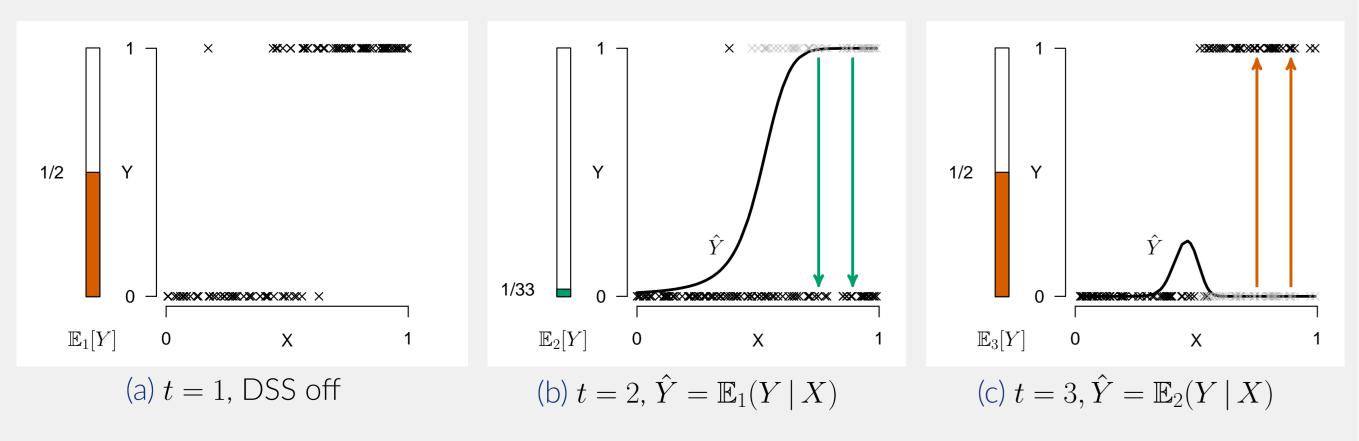
(a) Graph for context D = 0





Performative prediction

- A prediction \hat{Y} of Y is called *performative* if it affects Y.
- A numerical example: Y = 1 is to be prevented, $\hat{Y} = \mathbb{E}[Y | X]$ is a prediction of risk, and $\hat{Y} > 1/2$ instigates an action that effectively reduces the observed risk.



p.a.boeken@uva.nl

Evaluating and Correcting Performative Effects of Decision Support Systems via Causal Domain Shift

Philip Boeken Onno Zoeter Joris M. Mooij

Application A: Evaluation (T1, T2)

- 1. a) A DSS with model parameters θ is proposed. Should it be deployed? b) A DSS with model parameters θ is in use. Should we switch it off?
 - Definition 1 (Deployment effect) We define the *deployment effect* of a DSS with parameters θ as the average causal effect of the deployment of the DSS on the target variable, i.e.

 $\tau(\theta) := \mathbb{E}[Y | \operatorname{do}(D = 1, \Theta = \theta)] - \mathbb{E}[Y | \operatorname{do}(D = 0)].$ (1)

A new model with parameters θ_{t+1} is proposed. Must they replace current parameters θ_t ?

Definition 2 (Retraining effect)

	Metric	Source domain	Target domain	Target quantity
T1.a	au(heta)	D = 0	$D = 1, \Theta = \theta$	$\mathbb{E}[Y \mathrm{do}(D=1,\Theta=\theta)]$
T1.b	au(heta)	$D = 1, \Theta = \theta$	D = 0	$\mathbb{E}[Y \mathrm{do}(D=0)]$
T2	$ ho(heta_{t+1}, heta_t)$	$D = 1, \Theta = \theta_t$	$D = 1, \Theta = \theta_{t+1}$	$\mathbb{E}[Y \operatorname{do}(D = 1, \Theta = \theta_{t+1})]$

Table 1. Domain adaptation tasks for evaluation.

Application B: Bias correction (T3)

Let Y be an outcome whose expected value we want to minimize (e.g. a cost, З. negative utility/reward, etc.), and let \hat{Y} be a prediction that can instigate an action that reduces the expected outcome below a known level. A naively retrained model of $\hat{Y} = \mathbb{E}[Y \mid X]$ will underestimate the risk if the previous model was effective.

In certain settings the baseline predictor

 $\hat{Y} := \mathbb{E}[Y \mid X, \operatorname{do}(D)]$

is the optimal prediction model for preventing Y = 1.

Definition 4 (Performative bias)

When gathering data from the domain $D = 1, \Theta = \theta$, naive retraining will estimate $\mathbb{E}[Y | X, \operatorname{do}(D = 1, \Theta = \theta)]$ instead of $\mathbb{E}[Y | X, \operatorname{do}(D = 0)]$, yielding a performative bias:

 $\mathbb{E}[Y \mid X, \operatorname{do}(D = 1, \Theta = \theta)] - \mathbb{E}[Y \mid X, \operatorname{do}(D = 1, \Theta = \theta)]$

	Source domain	Target domain
Т3	$D = 1, \Theta = \theta$	D = 0

Table 2. The domain adaptation task for performative bias correction.

We define the *retraining effect* as the average causal effect of the deployment of a retrained DSS on the target variable, i.e. $\rho(\theta_{t+1}, \theta_t) := \mathbb{E}[Y \mid \operatorname{do}(D = 1, \Theta = \theta_{t+1})] - \mathbb{E}[Y \mid \operatorname{do}(D = 1, \Theta = \theta_t)].$

	Metric	Source domain	Target domain	Target quantity
T1.a	au(heta)	D = 0	$D = 1, \Theta = \theta$	$\mathbb{E}[Y \mathrm{do}(D=1,\Theta=\theta)]$
T1.b	au(heta)	$D = 1, \Theta = \theta$	D = 0	$\mathbb{E}[Y \mathrm{do}(D=0)]$
T2	$ ho(heta_{t+1}, heta_t)$	$D = 1, \Theta = \theta_t$	$D = 1, \Theta = \theta_{t+1}$	$\mathbb{E}[Y \mid \mathrm{do}(D=1,\Theta=\theta_{t+1})]$

• We measure i.i.d. data from $\mathbb{P}(X, \hat{Y}, Y \,|\, \mathrm{do}(D, \Theta))$

(2)

$$(3)$$

 $V = 1$

$$[Y | X, \operatorname{do}(D = 0)].$$
 (4)

Target quantity $\mathbb{E}[Y \mid X, \operatorname{do}(D=0)]$

Equivalence of T1-3, and non-identifiability

Lemma 1

Identifiability of the target quantities of the domain adaptation tasks T1, T2, T3 is equivalent to identifiability of the conditional expectation $\mathbb{E}[Y \mid X, \operatorname{do}(D = d, \Theta = \theta)]$ from $\mathbb{P}(X, Y | \operatorname{do}(D = d', \Theta = \theta'))$ for $(d, \theta) \neq (d', \theta')$.

Proposition 1

In the class of SCMs with graph G, the target quantity $\mathbb{E}[Y \mid X, \operatorname{do}(D = d, \Theta = \theta)]$ is not identifiable from $\mathbb{P}(X, Y | \operatorname{do}(D = d', \Theta = \theta'))$ for $(d, \theta) \neq (d', \theta')$.

the target domain) can be undesirable.

Solution: measure mediators of prediction and outcome

Definition 5 (Domain pivot)

 $\{X, Z\}$ such that $Y \perp D, \Theta \mid X, Z$.

Consider the graph G' below. For solving tasks T1–T3, we require measurements of the domain pivot $\{X, A, C\}$ with mediator A and confounder C in both the sourceand target domain. The outcome Y does not have to be measured in the target domain.

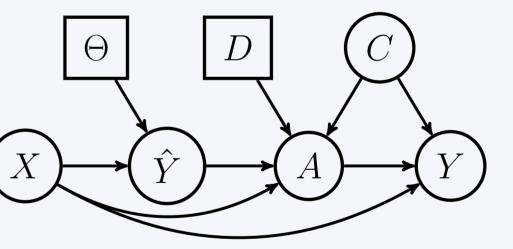


Figure 3. Graph G' with action A and confounder C, with $\{X, A, C\}$ as domain pivot.

action of choice without having seen \hat{Y} .

Proposition 2

able from

iff $Y \perp\!\!\!\perp D, \Theta \mid X, Z$, in which case $\mathbb{E}[Y \mid X, \operatorname{do}(D = d, \Theta = \theta)] = \mathbb{E}[\mathbb{E}[Y \mid X, Z, \operatorname{do}(D = d', \Theta = \theta')] \mid X, \operatorname{do}(D = d, \Theta = \theta)].$

Additional results in the paper:

- identifiability results when the data is subject to selection bias;
- the estimation of these quantities.

Booking.com

Problem: In high-stakes settings, performing an RCT (and thus measuring labels Y in

A domain pivot for target variable Y and domain indicator (D, Θ) is a set of variables

Practical implementation: show the prediction \hat{Y} to an agent, let them report their decision A and information C that influences this, but let another agent carry out their

Under positivity assumptions, the target quantity $\mathbb{E}[Y \mid X, \operatorname{do}(D = d, \Theta = \theta)]$ is identifi-

 $\{ \mathbb{P}(X, Z, Y \mid \operatorname{do}(D = d', \Theta = \theta')), \mathbb{P}(X, Z \mid \operatorname{do}(D = d, \Theta = \theta)) \}$