
Proceedings of Machine Learning Research vol 236:1–19, 2024 3rd Conference on Causal Learning and Reasoning

Evaluating and Correcting Performative Effects of Decision Support
Systems via Causal Domain Shift

Philip Boeken P.A.BOEKEN@UVA.NL
University of Amsterdam
Booking.com

Onno Zoeter ONNO.ZOETER@BOOKING.COM
Booking.com

Joris M. Mooij J.M.MOOIJ@UVA.NL

University of Amsterdam

Editors: Francesco Locatello and Vanessa Didelez

Abstract
When predicting a target variable Y from features X , the prediction Ŷ can be performative: an
agent might act on this prediction, affecting the value of Y that we eventually observe. Performative
predictions are deliberately prevalent in algorithmic decision support, where a Decision Support
System (DSS) provides a prediction for an agent to affect the value of the target variable. When
deploying a DSS in high-stakes settings (e.g. healthcare, law, predictive policing, or child welfare
screening) it is imperative to carefully assess the performative effects of the DSS. In the case that
the DSS serves as an alarm for a predicted negative outcome, naive retraining of the prediction
model is bound to result in a model that underestimates the risk, due to effective workings of the
previous model. In this work, we propose to model the deployment of a DSS as causal domain
shift and provide novel cross-domain identification results for the conditional expectation E[Y |X],
allowing for pre- and post-hoc assessment of the deployment of the DSS, and for retraining of a
model that assesses the risk under a baseline policy where the DSS is not deployed. Using a running
example, we empirically show that a repeated regression procedure provides a practical framework
for estimating these quantities, even when the data is affected by sample selection bias and selective
labelling, offering for a practical, unified solution for multiple forms of target variable bias.
Keywords: Performative Prediction, Decision Support Systems, Domain Adaptation, Causal Mod-
elling, Evaluation, Bias Correction.

1. Introduction

When the value of some variable is predicted, this prediction can cause an agent to take action. In
the context of linguistics, Austin (1962) coined the term performative for utterances that aim at
instigating action; in contrast with sentences of a descriptive nature. In economics, the concept
of performativity has received much attention, and has seen multiple different manifestations. For
example, it has been described as a more general concept where the emergence of economic theories
legitimize the markets they describe, which caused these markets to become more active. A very
concrete type of performativity has been observed in the common use of the Black-Scholes-Merton
(BSM) formula for predicting option prices, which in turn affects the price of said options to be
close to their predicted value (MacKenzie et al., 2007). Related notions are that of a self-fulfilling
prophecy, like the BSM formula, and the self-defeating prophecy, like warning of excessive risk that
instigates action to reduce this risk.
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In recent machine learning literature, much attention has been given to the performative effects
of predictions (Perdomo et al., 2020; Mendler-Dünner et al., 2020; Miller et al., 2021; Pombal et al.,
2022; Kim and Perdomo, 2023; Yan et al., 2023, among others). A common goal of these works is to
make a prediction that is close to the value that will be observed, taking into account the effect that
the prediction has on this target variable. Here, a core concept is the minimization of the performative
risk: the risk of a prediction model, evaluated on the data distribution it entails.

In this work we place the problem of performative prediction in the light of human-algorithmic
decision making, where predictions are deliberatively of a performative nature, but do not necessarily
have to be close to the eventually observed target variable. For example, algorithms that warn of
excessive risk (e.g. in churn prediction, predictive policing, or patient monitoring in the ICU) aim at
instigating an action that will reduce the predicted risk and thus aim at invalidating the prediction
that they make. Such models can be considered to predict risk under the baseline policy where
the decision support system (DSS) is not deployed (Coston et al., 2020). Naive retraining of such
prediction models can suffer from a bias that is induced in the training data by the previous prediction
algorithm, a concept that we refer to as performative bias. In this work, we show how to correct for
performative bias by explicitly modelling the deployment of the DSS, and treating the estimation of
the baseline predictor as a domain adaptation problem.

In aforementioned high-stakes environments, proper evaluation of the DSS is crucial. Over the
years many decision support systems have been deployed in high stakes environments, but not all
to great success (Coston et al., 2023). These events motivate thorough testing of any DSS prior to
deployment and thorough examination of the system during deployment, to foresee and monitor any
undesirable performative effects of the DSS. Despite the urgency of proper continuous assessment
of decision support systems, Wu et al. (2021) show that among all medical AI devices that are
approved by the FDA between January 2015 and December 2020, most evaluations of those devices
are pre-deployment studies, and hardly any post-deployment evaluations have been performed.1

To address the need of evaluation of DSSes, we propose and investigate the estimability of the
deployment effect, i.e. the effect of the deployment of the DSS on the target variable, and of the
retraining effect, i.e. the effect of a new prediction model on the target variable, compared to the
average outcome under the previous prediction model. In practise it can be unfeasible or unethical to
perform randomized controlled trials with the deployment of a DSS, which makes the estimability of
these evaluation metrics a domain adaptation problem.

In the following numerical example we further demonstrate the manifestation of performative
bias after naive retraining of a prediction model, and with it the need of its evaluation, e.g. by analysis
of the retraining effect. This example is inspired by a real-world scenario where in the training
data, high-risk individuals receive a treatment that effectively lowers the risk of a negative outcome,
inducing a bias in the training data (Caruana et al., 2015).

Example 1 Let X ∼ Unif[0, 1], Ŷ = f(X) for some function f , and Y ∼ Ber(σ(X−1/2)1{Ŷ <
1/2}) with σ(x) = (1+ e−x)−1. Three ‘epochs’ (samples) of this data generating process are shown
in Figure 1. In the first epoch, the DSS is not deployed, so we let Ŷ ≡ 0. In the second epoch, a

1. Although not all medical AI devices that are considered by Wu et al. (2021) provide explicit decision support, many
can be interpreted to do so. For example, image classification techniques for detecting tumours can be seen as
providing decision support, and evaluation of the performative effects of the deployment of such AI devices is likely
of importance.
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DSS that is trained on data from epoch one is deployed, so we let Ŷ = Ê1[Y |X],2 estimated from
P1(X,Y ). To units where the predicted risk Ŷ exceeds the threshold 1/2, action is taken to greatly
reduce this risk, effectively setting P(Y = 1 |X, {Ŷ > 1/2}) = 0 and thus preventing the outcome
Y = 1. The green arrows signify this positive effect, marking the grey-coloured counterfactual
observations that would have had the value Y = 1 if no prediction had been made, and which have
the value Y = 0 now that the prediction is made. This improvement is also indicated by the bar
charts, showing E2[Y ] ≈ 1/33 < 1/2 ≈ E1[Y ]. In the third epoch, a DSS is naively trained on data
from the second epoch, resulting in a model that underestimates the risk, due to effective workings of
the DSS in the previous epoch. Hence, the re-training has a negative effect on the average outcome,
as indicated by the red arrows and by the bar chart for E3[Y ].
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(c) t = 3, Ŷ = E2(Y |X)

Figure 1: In epoch t = 1 the DSS is not deployed. In t = 2 a DSS Ŷ is deployed that is trained on
data from t = 1, effectively reducing the mean of Y . In t = 3, a DSS Ŷ that is naively
retrained on data from t = 2 is deployed, increasing the mean of Y .

Contributions In this work, we model the deployment of decision support systems as causal
domain shift, and we investigate two applications of this causal model. The first application is the
evaluation of whether a novel DSS should be deployed, an existing DSS should be taken offline,
or whether a retrained version should be deployed. We define the deployment effect and retraining
effect as suitable evaluation metrics, and we show that the estimation of these evaluation metrics
constitutes two domain adaptation tasks (T1 and T2). The second application concerns the estimation
of a prediction model to be used by the DSS. We show that naive retraining of such prediction models
gets affected by performative bias that is induced by the previous prediction model; correcting for
this bias constitutes another domain adaptation problem (T3). We show that these domain adaptation
tasks are mathematically equivalent, and that they are not solvable (without additional assumptions
besides the causal model) when one cannot perform randomized experiments with the deployment
of the DSS. We define a domain pivot as a set of variables that, when measured in both the source-
and target domain of the domain adaptation problem, provides a solution to the domain adaptation
problems T1–3, and hence to the evaluation and bias correction applications. We employ the repeated
regression estimator from Boeken et al. (2023) for estimating the quantities of interest. As this

2. We let Ê[Y |X] denote an estimate of the conditional expectation E[Y |X]. This should interchangeably be interpreted
as the function x 7→ Ê[Y |X = x] or as the evaluation Ê[Y |X = X].
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estimator has originally been devised to deal with selection bias, we generalise the identifiability
and estimation results to settings that are subject to selection bias and/or selective labelling (missing
response). Efficacy of these methods is subsequently shown using Example 1.

1.1. Related work

A line of work following from Perdomo et al. (2020) considers the general setting where model
parameters θ for making a prediction Êθ[Y |X] induce a shift of the distribution of (X,Y ). This
dependence can be made explicit by writing P(X,Y | θ). Similar to Mendler-Dünner et al. (2022)
and Kim and Perdomo (2023), we consider the specific setting of outcome performativity where the
parameters don’t affect the features X but only the outcome Y , so where the distribution factorizes
according to P(X,Y | θ) = P(Y |X, θ)P(X), and conditional on the parameters the (X,Y ) pairs
are drawn i.i.d. This is a different setup than e.g. Chen et al. (2023) consider, as they allow effects like
Ŷi → Xj and Ŷi → Yj , where i ̸= j are sample indicators. We extend the setting of Mendler-Dünner
et al. (2022) and Kim and Perdomo (2023) by explicitly considering the domain where the DSS is
not deployed, allowing for the formulation of the domain adaptation task that we consider. For more
details we refer to Appendix A.1.

The task of transporting a statistical relation E[Y |X] over such domains is considered in the line
of work on transportability. Similar to Pearl and Bareinboim (2011) and Magliacane et al. (2018) we
leverage sets of variables that render a target variable independent from a domain indicator (which
we refer to as domain pivots) to transfer statistical relations over domains. Sound and complete
algorithms for transporting statistical relations are for example given by Correa and Bareinboim
(2019) and Lee et al. (2020). However, these algorithms make weaker assumptions than we do (in
terms of available data), which makes them unable to identify the target quantities that we consider.

The work of Coston et al. (2020) considers risk estimation under binary treatment, similar to how
we estimate the effect of deployment on an outcome variable Y . However, their estimation method
requires stronger assumptions on the available data than we do, making it unsuitable for the setting
that we consider.

In special cases where the utilized domain pivot consists of a context X and an action variable
(with a finite state space) that the agent controls to optimize a reward Y , our proposed evaluation
method can be interpreted as a form of off-policy evaluation for contextual bandits, as investigated
by Dudı́k et al. (2014); Wang et al. (2017). We elaborate on this connection in Appendix A.2.

To estimate our quantities of interest, we employ the repeated regression estimator from Boeken
et al. (2023). This estimator is originally proposed to correct for selection bias. In this work, we show
that this estimator can simultaneously correct for selection bias and performative bias. The repeated
regression estimator bears resemblance to the work on surrogate indices by Athey et al. (2019),
as both methods consider the use of a conditional expectations as pseudo-labels in the estimation
procedure. However, translating it to our setting, the work on surrogate indices operates under a
different set of assumptions than we do, as it requires the target variable Y to be measured under
both deployment and non-deployment. More details are provided in Appendix A.3.

2. Causal modelling of decision support systems

We consider the setting with multidimensional covariates X , univariate target variable Y , and a
prediction Ŷ of Y that is a function of X and parameters Θ, denoted with Ŷ = fŶ (X,Θ). We allow
for hidden confounding between X and Y . We assume the state space of any variable V to be (a
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subset of) RdV for some dV ∈ N, equipped with its standard topology and the Borel sigma-algebra.
Variables, their state space, and their values are indicated with uppercase, calligraphic and lowercase
letters (V,V, v) respectively.

To distinguish between pre- and post-deployment settings of the decision support system, we
introduce a domain indicator D which represents a context-specific dependency: D = 0 indicates
the domain where Ŷ does not affect Y (i.e. the prediction is not published), and D = 1 indicates the
domain where Ŷ affects Y . Formally, the structural causal model3 to describe this data generating
process is

X = fX(EX , EXY ), Ŷ = fŶ (X,Θ), Y =

{
fY,0(X,EXY , EY ) if D = 0

fY,1(X, Ŷ , EXY , EY ) if D = 1
(1)

with independent exogenous distributions P(EX),P(EY ) and P(EXY ) and measurable functions
fX , fŶ , fY,0, fY,1. The Acyclic Directed Mixed Graph (ADMG) of this SCM in the different domains
D is depicted in Figures 2(a) and 2(b), and the causal graph of the joint model is depicted in Figure
2(c), with explicit domain indicator D.

X Ŷ Y

Θ

(a) D = 0

X Ŷ Y

Θ

(b) D = 1

X Ŷ Y

Θ D

(c) Causal graph with do-
main indicator D.

Figure 2: Modelling the deployment of the DSS with prediction Ŷ as domain shift.

As we don’t assume an a-priori distribution for the variables D and Θ, these variables are
graphically indicated with squared nodes and formally referred to as input nodes of the SCM,
following Forré (2021). For given values of D and Θ, this SCM gives rise to the Markov kernel
P(X, Ŷ , Y | do(D,Θ)), defined as the pushforward of the exogenous distribution P(EX)⊗P(EY )⊗
P(EXY ) through the structural equations.4 We assume that data will be sampled over epochs,
indicated by t, where for given values θt, dt we sample (Xt,i, Ŷt,i, Yt,i) ∼ P(X, Ŷ , Y | do(D =
dt,Θ = θt)) i.i.d. for i = 1, ..., nt and some nt ∈ N. Note that this implies that D and Θ are neither
influenced by, nor confounded with the variables (Xt,i, Ŷt,i, Yt,i) of the current epoch. Denoting
measurements (Vt,1, ..., Vt,nt)

T of a variable V with Vt, the values θt and dt can be determined by
data from past epochs {(Xs, Ŷs,Ys, θs, ds) : s < t}.

When considering SCMs with more variables than {X, Ŷ , Y,D,Θ}, we require the latent pro-
jection onto {X, Ŷ , Y,D,Θ} to be (a subgraph of) the graph from Figure 2(c) for it to appropriately
represent the deployment of a DSS.

Assumption 1 We consider the set M of SCMs with endogenous variables V ⊇ {X, Ŷ , Y }, input
variables {D,Θ} and graph G such that PaG(Ŷ ) = {X,Θ} and ChG(D) = ChG(Ŷ ), and such

3. We will use many concepts from this causal framework: parents, children, ancestors, d-separation, the Markov property,
etc. For more information, we refer to Pearl (2009) and Bongers et al. (2021).

4. We define P(X,Y | do(D = 0)) (without dependence on Θ) similarly but with the structural equation for Y evaluated
at D = 0, for which we have P(X,Y |do(D = 0)) = P(X,Y | do(D = 0,Θ = θ)) for all θ.
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that the graph of the latent projection of G onto {X, Ŷ , Y,D,Θ} is a subgraph of the ADMG in
Figure 2(c).

As alluded to in Section 1, we are interested in the evaluation of the DSS prior to- and during
its deployment, and in correcting for the bias that is induced by a previous deployment of the DSS
when retraining the prediction model. Having explicitly defined the deployment indicator D and
parameters Θ, we are enabled to make these estimation tasks more precise.

2.1. Application A: Evaluation

When a DSS with some parameter value θ and prediction model Ŷ = fŶ (X, θ) has been developed,
the intention behind this DSS is to improve the value of some outcome metric Y . As motivated in the
introduction, human usage of a newly developed DSS can involve errors that have a negative impact
on Y . To evaluate this, we define the deployment effect of a DSS with parameters θ.

Definition 2 (Deployment effect) The deployment effect of a DSS with parameters θ is defined as
the average causal effect of the deployment of the DSS on the target variable, i.e.

τ(θ) := E[Y | do(D = 1,Θ = θ)]− E[Y |do(D = 0)]. (2)

Prior to deployment of the DSS we are interested in estimating τ(θ) from data sampled from
P(X,Y | do(D = 0)). Since E[Y |do(D = 0)] is directly estimable, the challenge lies in estimating
E[Y |do(D = 1,Θ = θ)]. We refer to this domain adaptation task as T1.a. After deployment, we are
interested in estimating τ(θ) from P(X,Y |do(D = 1,Θ = θ)), e.g. to monitor the correct usage
of the DSS: if the mean value of Y is estimated to be worse for (D = 1,Θ = θ) than for D = 0,
it could be better to turn off the DSS, and further investigate why it has a negative effect on the
outcome. Since E[Y |do(D = 1,Θ = θ)] is directly estimable, the challenge then lies in estimating
E[Y |do(D = 0)]. We refer to this domain adaptation task as T1.b.

When in epoch t a DSS with parameters θt is deployed one might further develop the DSS,
resulting in parameters θt+1. Before deploying this ‘retrained’ DSS, one might want to evaluate the
impact that these new parameters will have on Y .

Definition 3 (Retraining effect) The retraining effect is defined as the average causal effect of the
deployment of a retrained DSS on the target variable, i.e.

ρ(θt+1, θt) := E[Y | do(D = 1,Θ = θt+1)]− E[Y |do(D = 1,Θ = θt)]. (3)

In the setting described above, we aim at estimating ρ(θt+1, θt) from P(X,Y | do(D = 1,Θ = θt)).
Since E[Y | do(D = 1,Θ = θt)] is directly estimable, the challenge lies in estimating E[Y | do(D =
1,Θ = θt+1)]. We refer to this domain adaptation task as T2. We have summarised these domain
adaptation tasks in Table 1.

2.2. Application B: Bias correction

Let Y be an outcome whose expected value we want to minimize, e.g. a cost, negative utility, or
negative reward. Prior to deployment, data is generated from P(X,Y | do(D = 0)), and the average
outcome Y is related to features X via E[Y |X,do(D = 0)]. This could be considered to be a
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Metric Source domain Target domain Target quantity

T1.a τ(θ) D = 0 D = 1,Θ = θ E[Y |do(D = 1,Θ = θ)]
T1.b τ(θ) D = 1,Θ = θ D = 0 E[Y |do(D = 0)]
T2 ρ(θt+1, θt) D = 1,Θ = θt D = 1,Θ = θt+1 E[Y |do(D = 1,Θ = θt+1)]
T3 – D = 1,Θ = θ D = 0 E[Y |X,do(D = 0)]

Table 1: Domain adaptation tasks for evaluation (T1, T2) and performative bias correction (T3).

‘baseline policy’. It might be the case that a DSS is developed to identify cases that have (under
this baseline policy) a high risk of seeing an outcome that is to be prevented, like a patients death, a
customer churning, or a crime to be committed in a particular neighbourhood (Coston et al., 2020).
In this setting, a sensible predictor Ŷ would be the following:

Definition 4 (Baseline predictor) We are interested in estimating the baseline predictor

Ŷbp = E[Y |X,do(D = 0)]. (4)

As demonstrated in Example 1, naive regression of Y on X to retrain the model for Ŷ from
P(X,Y | do(D = 1,Θ)) would yield a predictor Ŷ = E[Y |X,do(D = 1,Θ)], and hence is biased
when the DSS is supposed to make the baseline prediction.

Definition 5 (Performative bias) The performative bias is defined as the bias that the deployment
of the DSS induces on the statistical relation E[Y |X], i.e.

E[Y |X,do(D = 1,Θ = θ)]− E[Y |X,do(D = 0)]. (5)

Estimating the baseline predictor from the domain (D = 1,Θ = θ), and thus correcting for
performative bias, is a domain adaptation task that we refer to as T3.

If we let Y be binary, the baseline predictor is indeed the optimal prediction function Ŷ : X →
[0, 1] if it is a risk assessment for the event Y = 1 (given features X) and serves as an ‘alarm’ to
identify ‘risky cases’, based on which an agent can take an action A which surely decreases the
risk to a known level, but which one also wants to use sparingly. The action A could for example
be to operate a patient with features X to minimize the probability of death Y , or the offering of a
discount A to a customer X to minimize the probability of churning Y . Clearly, one wants to use
these actions sparingly. This type of optimality of the baseline predictor is formalised as follows:

Proposition 6 Given a Markov kernel P(Y = 1|X,A), consider the SCM X ∼ P(X), A =
D · 1{Ŷ > ε(X)}, Ŷ = ŷ(X), Y ∼ P(Y = 1 |X,A) with ε(x) := P(Y = 1 |X = x,A = 1) and
some function ŷ : X → [0, 1]. The baseline predictor Ŷbp solves the following bilevel optimization
problem:

1. H := argmin
ŷ∈[0,1]X

P(Y = 1 |X = x,do(D = 1, Ŷ = ŷ(x)))

2. Ŷbp ∈ argmin
ŷ∈H

P(A = 1 |X = x,do(D = 1, Ŷ = ŷ(x)))
(6)

for P(X)-almost all x ∈ X .
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2.3. Equivalence of T1–3 and their non-identifiability

Having these two applications in mind, our goal is to estimate the deployment effect τ(θ), the
retraining effect ρ(θt+1, θt), and the baseline predictor Ŷbp from varying source domains, and thus
solving domain adaptation tasks T1–3 as displayed in Table 1. A prerequisite for estimation is
the identifiability of these quantities: whether there exists a mathematical operation on the source
distribution that yields the target quantity. This concept is formally defined as follows:

Definition 7 (Identifiability) Given a set of SCMs M, a target quantity t(M) (some function of
M ∈ M) is identifiable in M from a set s(M) := {s1(M), ..., sn(M)} of (marginal, conditional
and/or interventional) distributions induced by M if s(M1) = s(M2) =⇒ t(M1) = t(M2) for all
M1,M2 ∈ M.

Throughout, we will consider M as defined in Assumption 1. Given source distribution(s) s(M)
and target quantity t(M), identifiability means that for all M ∈ M the map s(M) 7→ t(M) is
well defined, which can be shown by explicitly providing it. Non-identifiability can be shown by
providing SCMs M1,M2 ∈ M for which s(M1) = s(M2) but t(M1) ̸= t(M2). Throughout, our
target t(M) will be a conditional expectation, and we will specify s(M) and t(M) without explicit
dependence on M .

We first consider the graph depicted in Figure 2(c) and we show that tasks T1–3 are equivalent to
a single domain adaptation task:

Lemma 8 Identifiability of each of the target quantities of the domain adaptation tasks T1–3
is equivalent to identifiability of the conditional expectation E[Y |X,do(D = d,Θ = θ)] from
P(X,Y |do(D = d′,Θ = θ′)) for some (d′, θ′) ̸= (d, θ) with d′ = d = 1 ⇐⇒ θ′ ̸= θ.

The last condition on the domains ensures that we don’t consider d = d′ = 0 and θ ̸= θ′, which
is trivially excluded as the distribution of (X,Y ) would then be the same in the source and target
domains.

The following proposition shows that measuring a single source distribution is not sufficient for
identification of the target quantities as specified above, and with that, that the tasks T1–3 cannot be
solved without imposing additional assumptions.

Proposition 9 The target quantity E[Y |X,do(D = d,Θ = θ)] is not identifiable in M from
P(X,Y | do(D = d′,Θ = θ′)) if (d′, θ′) ̸= (d, θ) with d′ = d = 1 ⇐⇒ θ′ ̸= θ.

It is immediately clear that if (X,Y ) pairs are measured in both the source and target domains,
then E[Y |X,do(D = d,Θ = θ)] would be identifiable, and hence also τ(θ), ρ(θt+1, θt) and Ŷbp.
However, in practice it might not be feasible to gather labels from the target domain. Alas, in high-
stakes settings, deploying a DSS without knowing what effect it will have on the outcome Y can be
undesirable. So, to be able to identify these target quantities without requiring measurements of the
outcome variable Y in the target domain we will leverage additional assumptions, as demonstrated in
the next section.

2.4. Domain pivots: mediators of the prediction and outcome

When a prediction Ŷ affects the value Y , this might happen through an action A that perfectly
mediates Ŷ and Y , i.e. we have Ŷ → A → Y and there is no edge Ŷ → Y . In this case, only A is
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directly affected by the deployment of the DSS, so we have D → A and not D → Y . If this action
A is unconfounded with Y , we have the independence Y ⊥⊥D,Θ |X,A. If A and Y are confounded
(by C, say), we have Y ⊥⊥D,Θ |X,Z where Z = {A,C}. A graphical depiction of this setting is
provided in Figure 3. As we will see later, finding a set of variables Z for which this conditional
independence is satisfied is instrumental for the domain adaptation task that we have in mind. Note
that Figure 3 is not the only graph that exhibits Y ⊥⊥D,Θ |X,C,A, as we can add multiple instances
of latent confounding (bidirected edges) to this graph and maintain the required independence.

X Ŷ A

C

Y

Θ D

Figure 3: Performative prediction through a mediator A, with an observed common cause C.

Definition 10 (Domain pivot) Given domain indicator D, features X , target variable Y and esti-
mand F (P(Y |X,D = d)) with F a statistical functional5 and d ∈ D, we call {X,Z} a domain
pivot for F (P(Y |X,D = d)) if Y ⊥⊥D |X,Z.

Our main solution for T1–3 assumes that the domain pivot {X,Z} can be measured in the target
domain. Sampling from P(X,Z | do(D = 1,Θ)) prior to deployment of the DSS might seem like an
unreasonable assumption, but there can be practical ways to do so. Consider the example of a patient
with features X , and a doctor having to decide treatment A, where {X,A} is a domain pivot. Here,
P(A|X, Ŷ , do(D = 1,Θ)) can be measured by showing the doctor the prediction Ŷ , and measuring
the treatment that the doctors prescribe for this patient after seeing this prediction. Measuring such
intended actions is also leveraged by Stensrud et al. (2023) to improve treatment regimes. Practically,
one would require the availability of another doctor who has not seen the prediction of the DSS to
prescribe the treatment that will actually be carried out.

Similarly, if a DSS is currently deployed one can sample from P(X,A | do(D = 0)) without
taking the DSS offline, by measuring an intended action A without revealing the prediction Ŷ to
the agent. After having made this measurement, one can reveal the prediction Ŷ , and the agent can
proceed with taking actions.

If A and Y are confounded by a common cause C (so Y ⊥̸⊥D,Θ |X,A and Y ⊥⊥D,Θ |X,A,C)
then it is instrumental to also measure this confounding information, i.e. measure P(X,A,C|do(D =
d,Θ = θ)) for target domain (d, θ). This is a restrictive, but common assumption in causal inference.
In automated decision making, it is not uncommon for a decision algorithm to heuristically combine
a prediction Ŷ and additional covariates C that were not used for making the prediction (so they are
not part of features X), in which case this confounding information might be readily available.

Note that prior to deployment, one cannot test for the required independence due to absence of
labels Y from the domain D = 1. Instead, one could motivate this independence assumption by
causal modelling of the data generating process.

5. F is a statistical functional if it is a function F : P(Y) → Rd, with P(Y) the space of probability distributions on Y ,
and d ∈ N. For more information, see Shao (2003).
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Our main result is that when it is unfeasible to measure labels Y in the target domain, but when
we are able to measure variables {X,Z} in the target domain, our target quantities can be identified
if and only if {X,Z} is a domain pivot.

Proposition 11 Let (d′, θ′) ̸= (d, θ) be given with d′ = d = 1 ⇐⇒ θ′ ̸= θ. The target quantity
E[Y |X,do(D = d,Θ = θ)] is identifiable in M from

{P(X,Y, Z | do(D = d′,Θ = θ′)),P(X,Z | do(D = d,Θ = θ))} (7)

if P(X,Z | do(D = d,Θ = θ)) ≪ P(X,Z | do(D = d′,Θ = θ′)),6 and if and only if Y ⊥⊥D,Θ |X,Z,
in which case

E[Y |X,do(D = d,Θ = θ)] =

∫
E[Y |X,Z,do(D = d′,Θ = θ′)]dP(Z |X,do(D = d,Θ = θ))

(8)
P(X| do(D = d,Θ = θ))-a.e.

The absolute continuity ensures that the conditional expectation E[Y |X,Z,do(D = d′,Θ = θ′)] is
P(X,Z|do(D = d,Θ = θ))-a.e. well-defined, and hence that the integral in (8) is well-defined.

Via Lemma 8 and Proposition 11, we have solvability of domain adaptation tasks T1–3 under the
assumption that a domain pivot is measured in the source and target domain. For completeness, we
provide an overview of these implied identifiability results:

Corollary 12 In the subset of SCMs of M that have a domain pivot {X,Z} for E[Y |X,do(D,Θ)]
and for which P(X,Z | do(D = d,Θ = θ)) ≪ P(X,Z | do(D = d′,Θ = θ′)) for all d, d′, θ, θ′, we
have that

T1. the deployment effect τ(θ) is identifiable from {P(X,Y, Z |do(D = 0)),P(X,Z |do(D =
1,Θ = θ))} via

τ(θ) = E[E[Y |X,Z,do(D = 0)] | do(D = 1,Θ = θ)]− E[Y |do(D = 0)] (9)

and from {P(X,Y, Z | do(D = 1,Θ = θ)),P(X,Z | do(D = 0))} via

τ(θ) = E[Y | do(D = 1,Θ = θ)]− E[E[Y |X,Z,do(D = 1,Θ = θ)]| do(D = 0)]; (10)

T2. the retraining effect ρ(θt+1, θt) is identifiable from {P(X,Y, Z |do(D = 1,Θ = θt)),P(X,
Z | do(D = 1,Θ = θt+1))} via

ρ(θt+1, θt) := E[E[Y |X,Z,do(D = 1,Θ = θt)]|do(D = 1,Θ = θt+1)]

− E[Y | do(D = 1,Θ = θt)]; (11)

T3. the baseline predictor E[Y |X,do(D = 0)] is identifiable from {P(X,Y, Z | do(D = 1,Θ =
θ)),P(X,Z | do(D = 0))} via

E[Y |X,do(D = 0)] = E[E[Y |X,Z,do(D = 1,Θ = θ)]|X,do(D = 0)]. (12)

We note that the assumption in Proposition 11 of availability of measurements of a domain pivot
{X,Z} from the target domain is necessary for solving T1–3. Indeed, Lemma 8, Proposition 9 and
Proposition 11 together show the necessity of these measurements to solve these estimation tasks, if
one is not willing to make further assumptions on the causal model.

6. For two distributions P(X) and P̃(X), P(X) ≪ P̃(X) denotes absolute continuity of P with respect to P̃, i.e.
P(X ∈ B) > 0 =⇒ P̃(X ∈ B) > 0 for all measurable sets B.
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3. Estimation

The identification result for the quantity E[Y |X,do(D,Θ)] expresses the target quantity as an
integral of a conditional expectation; this expression does not indicate how to estimate the quantity
of interest. When X and Z have finite sample spaces, one can estimate the conditional expectation
(the integrand) with maximum likelihood, and compute the integral as a finite sum. However, when
there are continuous variables involved, one has to tend to regression methods. In this section we
expand on the suitable repeated regression procedure, as proposed by Boeken et al. (2023).

To estimate E[Y |X,do(D = d,Θ = θ)] we can express equation (8) as

E[Y |X,do(D = d,Θ = θ)] = E[E[Y |X,Z] |X,do(D = d,Θ = θ)], (13)

where we used Y ⊥⊥D,Θ |X,Z to remove the conditioning on (D,Θ) in the inner expectation.7

We formulate an estimation procedure based on this expression by estimating both conditional
expectations on the right-hand-side with a regression model. More explicitly, given a sample
(Xi, Yi, Zi) ∼ P(X,Y, Z | do(D = d′,Θ = θ′)) with indices i in index set IS (source) and
(Xi, Zi) ∼ P(X,Z |do(D = d,Θ = θ)) with indices i in index set IT (target), the repeated
regression estimator Ê[Y |X,do(D = d,Θ = θ)] is defined by estimating Ê[Y |X,Z] from IS ,
augmenting the target dataset with pseudo-labels Ỹi := Ê[Y |X = Xi, Z = Zi] for all i ∈ IT , and
estimating Ê[Y |X,do(D = d,Θ = θ)] := Ê[Ỹ |X] on the augmented target dataset.

For estimation of the expectation E[Y |do(D = d,Θ = θ)], we can estimate a regression
model Ê[Y |X,Z] on the source dataset IS , and directly compute Ê[Y |do(D = d,Θ = θ)] :=
|IT |−1

∑
i∈IT Ê[Y |X = xi, Z = zi].

The repeated regression procedure only requires measurements of the variable Z to be available
during training and not during deployment. Hence, this estimation procedure falls under the Learning
using Privileged Information paradigm Vapnik and Vashist (2009); Vapnik and Izmailov (2015). This
is a convenient property, as it might be costly or even impossible to measure the covariates Z at test
time. We leave the choice of the regression method up to the practitioner, but we remark that these
methods typically impose further assumptions on the sample spaces, exogenous distributions and
structural equations.

Using Example 1, we demonstrate how these methods can be used to evaluate the deployment of
the DSS.

Example 1 (Application A: Evaluation) Recall the data generating process X ∼ Unif[0, 1], Ŷ =
f(X) for some function f , but now with intermediary variables A = D · 1{Ŷ > 1/2} with
Y ∼ Ber(σ(X − 1/2) · (1−A)). Recalling Figure 1, we will compute τ or ρ between the epochs
to see whether deployment of a new model would be the right choice. Since Y ⊥⊥D,Θ |X,A, we
justifiably use {X,A} as domain pivot for estimating τ and ρ. Between t = 1 and t = 2, for a model
with parameter value θ2 to be deployed in epoch 2, we can sample P(X,A| do(D = 1,Θ = θ2)),
and estimate τ(θ2) ≈ −0.47 using equation (9), with the iterated expectation computed with repeated
(polynomial logistic) regression. The lower the value of Y the better, so we decide to deploy this model
in epoch t = 2, as displayed in Figure 1(b). Between epochs t = 2 and t = 3, we have retrained a

7. Formally, the independence Y ⊥⊥D,Θ |X,Z between random variable Y and input variables D,Θ is to be interpreted
as transitional conditional independence (Forré, 2021). It implies E[Y |X,Z] = E[Y |X,Z,do(D = d,Θ =
θ)] P(X,Z|do(D = d,Θ = θ))-a.e., so we may pool data over multiple epochs when estimating E[Y |X,Z].
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model with parameter value θ3. Before deploying it, we can sample P(X,A|do(D = 1,Θ = θ3)),
and estimate ρ(θ3, θ2) ≈ 0.47 using equation (11), based on which we can decide not to deploy it.

Continuing with Example 1, we demonstrate that the repeated regression procedure correctly esti-
mates the baseline predictor E[Y |X,do(D = 0)] from P(X,A | do(D = 0)) and P(X,A, Y | do(D =
1,Θ)), and thereby provides a stable estimation procedure for retraining prediction models.

Example 1 (Application B: Bias correction) As mentioned above, a model with parameter value
θ3 that is naively trained on data from epoch t = 2 suffers from performative bias, as is found by
estimating ρ(θ3, θ2). Instead of deploying the naively retrained model, we leverage the domain pivot
{X,A} to estimate the baseline predictor Ŷbp = E[Y |X,do(D = 0)] using repeated (polynomial
logistic) regression. This model is displayed in Figure 4.

1/20

0 1

0

1

Y

XE3[Y ]

Ŷ

Figure 4: t = 3, Ŷ = Ê[Y |X,do(D = 0)]

4. Sample selection bias and selective labelling

When dealing with real-world data, it is not uncommon that the data suffers from some form of
sample selection bias: that units are filtered before they are being measured, rendering the sample
unrepresentative of the population. Another, related form of bias is when units are selectively labelled,
i.e. when the label Y can be missing. This is explicitly prevalent in human-algorithmic decision
making, when based on some prediction Ŷ the unit can be dismissed, and the outcome Y is not
measured; see also Guerdan et al. (2023). These selection mechanisms can be causally modelled
by including a binary sample selection indicator Ss and binary labelling indicator Sℓ in the SCM,
where Ss = 1 indicates that the unit is included in the dataset, and Sℓ = 1 indicates that the label Y
is observed.

X Ŷ A

C

Y

M

Θ D

S

Figure 5: A causal graph with selection variable S.
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For ease of notation, we let S = Ss ∧ Sℓ, so that in the source domain we measure data from
P(X,Y, Z |S = 1, do(D,Θ)), with Z ⊆ V a set of variables. If one wants to correct for selection
bias, the target quantity becomes E[Y |X,do(D = d,Θ = θ)], so without the conditioning on S = 1.
Similar to the treatment in Section 2 it can be shown that this target quantity is not identifiable, but one
can extend Proposition 11 to settings where selection bias is in play by considering (D,Θ, S) to be the
domain indicator and {X,Z} a domain pivot, so with Y ⊥⊥D,Θ, S |X,Z. For example, in Figure 5
we can let Z = {A,C,M}, where A can for example be an action, C a confounder, and M a mediator
of the selection variable and the outcome. The target quantity E[Y |X,do(D = d,Θ = θ)] is then
identifiable in M from {P(X,Y, Z |S = 1, do(D = d′,Θ = θ′)),P(X,Z |do(D = d,Θ = θ))} if
also P(X,Z | do(D = d,Θ = θ)) ≪ P(X,Z |S = 1, do(D = d′,Θ = θ′)), in which case

E[Y |X,do(D = d,Θ = θ)] = E[E[Y |X,Z, S = 1] |X,do(D = d,Θ = θ)] (14)

P(X| do(D = d,Θ = θ))-a.e. This iterated expectation can be estimated using repeated regression.
A similar identification result has been given in Boeken et al. (2023), but solely for selection

bias or missing response. The above identification result shows the ability of repeated regression
to correct for multiple forms of domain shift simultaneously, provided that a domain pivot can be
measured in the target domain. For more information on selection bias and missing response, we
refer to Boeken et al. (2023) and references therein.

5. Discussion

In this work, we modelled the deployment of a decision support system as causal domain shift,
introduced evaluation and bias correction as two applications of this causal model, and have shown
how certain estimands in these applications can be only be estimated under the availability of
measurements of a domain pivot in the target domain. We have demonstrated how repeated regression
is a suitable estimation procedure for evaluation and bias correction, even if the measured labels are
subject to selection bias and/or selective labelling.

Sensitivity analysis with respect to the conditional independence assumption, such as the estima-
tion of bounds of the quantity of interest when this independence does not hold, might be a promising
direction for future work. Constructing doubly robust and efficient estimators for the deployment
effect, retraining effect, and baseline predictor, e.g. using influence functions (Dudı́k et al., 2014;
Athey et al., 2019), would also be of interest.

An important assumption for the relevance of our identifiability results is that labels are never
observed in the target domain of the domain adaptation problems. Estimating the deployment effect,
retraining effect, and baseline predictor can be done directly on available data if labels are measured
in the target domain, e.g. through A/B testing of the deployment of the DSS. However, in high stakes
environments it is often neither desired nor ethical to carry out such experiments. If these labels
are not measured in the target domain, our proposed methods heavily depend on the availability of
measurements of a domain pivot in the target domain, without actually deploying the DSS. This can
be a restrictive assumption in practice. If such data is available, our evaluation metrics rely on an
estimated model; a practice that requires caution.

Nevertheless, we hope that the proposed causal model, evaluation metrics and the concept of
performative bias will be useful tools for responsible applications of AI systems in high-stakes
settings.
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Appendix A. Relation to existing literature

A.1. Performative prediction

Translated to our notation, Perdomo et al. (2020) introduced the performative risk:

E[ℓ(Ŷ , Y )| do(D = 1,Θ = θ)]. (15)

where ℓ is a loss function. They define a parameter θt to be performatively stable if it constant under
retraining, so if we get

θt ≈ argmin
θ

E[ℓ(Ŷ , Y )|do(D = 1,Θ = θt)]. (16)

They don’t consider the case where D = 0, so the deployment effect τ(θ) can for example not be
defined using the existing framework.

The baseline predictor Ŷ = E[Y |X,do(D = 0)] does not minimize performative risk, but
in the setting of Proposition 6, it is a performatively stable predictor: if we parametrise Ŷθt =
Êθt [Y |X,do(D = 0)], then estimating Ŷθt+1 = Êθt+1 [Y |X,do(D = 0)] from P(X,Y, Z| do(D =
1,Θ = θt)) and P(X,Z| do(D = 0)) will yield θt ≈ θt+1. A performatively stable parameter
θt ≈ θt+1 will have as retraining effect ρ(θt, θt+1) ≈ 0.

A.2. Off-policy evaluation

In contextual bandits, one considers a context X , an action A ∼ P(A|X,do(Θ = θ)) (where
P(A|X,do(Θ)) is referred to as a policy with parameters Θ), and a reward Y ∼ P(Y |X,A). This
gives rise to a joint distribution P(X,A, Y |do(Θ)). When one has measured data from a policy with
parameters θ, the problem of off-policy evaluation is that of estimating for a new set of parameters
θ′ ̸= θ the reward E[Y |do(Θ = θ′)] from P(X,A, Y |do(Θ = θ)).

If the relation between X,A and Y is such as described above, Proposition 11 combined with
the repeated regression procedure says that we can estimate

E[Y |do(Θ = θ′)] = E[E[Y |X,A]| do(Θ = θ′)], (17)

which is known as the direct method in contextual bandit literature Dudı́k et al. (2014). Note that
our results from Section 2 consider a rather intricate policy, namely one that factorizes according
to P(A|X,C,do(D = 1,Θ = θ)) = P(A|X,C, Ŷ , do(D = 1))P(Ŷ |X,do(Θ = θ)). Note that
typically, for given parameters θ, we don’t know the policy P(A|X,C,do(D = 1,Θ = θ)) (contrary
to when one considers a setting of automated decision making) but we can merely sample from it, as
is explained in Section 2.4.

A.3. Surrogate indices

Athey et al. (2019) consider the estimation of a causal effect with a similar technique as repeated
regression. For estimating a causal effect

E[Y |do(D = 1)]− E[Y | do(D = 0)], (18)

they consider the case where one has two samples: an observational sample with measurements of
covariates X , target variable Y and so-called surrogates Z (so not of D), and an experimental sample
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with measurements of X,D and Z (so not of Y ). For a set of variables Z to be surrogates, they
require the independence Y ⊥⊥D |X,Z8, and that {X,Z} is a valid adjustment set for estimating
the causal effect of D on Y , i.e. E[Y |do(D)] = E[E[Y |X,Z]|D]. Their identification strategy is
built on the equation

E[Y | do(D = 1)]− E[Y |do(D = 0)] = E[E[Y |X,Z]|D = 1]− E[E[Y |X,Z]|D = 0]. (19)

Note that we consider a different setup. Instead of having ‘observational’ and ‘experimental’
samples, alternating the measurements of treatment D or outcome Y , we consider a setting where for
one value of the treatment (D = 0, say) we observe Y , and for the other value of the treatment we
don’t observe Y . An overview of these different assumptions is given in Table 2. Our identification
result is similar to that of Athey et al. (2019), but can be interpreted as intervention extrapolation,
instead of causal effect estimation using surrogate outcomes.

Sample X D = 0 D = 1 Z Y

Athey et al. (2019) Observational ✓ × × ✓ ✓
Experiment ✓ ✓ ✓ ✓ ×

This work Source (D = 0) ✓ ✓ × ✓ ✓
Target (D = 1) ✓ × ✓ ✓ ×

Table 2: A comparison of the setting in Athey et al. (2019) and this work.

Appendix B. Proofs

Proof [Proposition 6] Define G := {x : P(Y = 1 |X = x,A = 0) > ε(x)}. We have the unique
optimal policy A∗(X) := 1G(X) for mina∈{0,1}X P(Y = 1 |X,A = a), and thus we have the set
of minimizers

H := argmin
ŷ∈[0,1]X

P(Y = 1 |X = x,do(Ŷ = ŷ(x)))

= argmin
ŷ∈[0,1]X

P(Y = 1 |X = x,A = 1{ŷ(x) > ε})

= {ŷ ∈ [0, 1]X : A∗(x) = 1{ŷ(x) > ε(x)}∀x ∈ X}
= {ŷ ∈ [0, 1]X : ŷ(x) ≥ P(Y = 1 |X = x,A = 0)}.

Clearly we have

Ŷ ∗ := argmin
ŷ∈H

P(A = 1 |X = x,do(Ŷ = ŷ(x)))

= argmin
ŷ∈H

1{ŷ(x) ≥ ε(x)}

= P(Y = 1 |X = x,A = 0),

8. This is the same conditional independence that we require for the domain pivot, but we are reluctant to call a domain
pivot a surrogate, as we don’t restrict the domain shift to be the value of an intervention but also other types of domain
shift, like selection bias.
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and since Y ⊥⊥D |X,A and D = 0 =⇒ A = 0 we further get

P(Y = 1 |X = x,A = 0) = P(Y = 1 |X = x,A = 0, D = 0) = P(Y = 1 |X = x,D = 0),

and thus Ŷ ∗ = E[Y |X,D = 0].

Proof [Lemma 8] If E[Y |X,do(D = d,Θ = θ)] is identifiable from P(X,Y | do(D = d′,Θ =
θ′)), then since X ⊥⊥D,Θ we have P(X |do(D = d′,Θ = θ′)) = P(X | do(D = d,Θ = θ)),
so E[Y | do(D = d,Θ = θ)] = E[E[Y |X,do(D = d,Θ = θ)] |do(D = d′,Θ = θ′)], so
E[Y |do(D = d,Θ = θ)] is identifiable as well.

If E[Y |X,do(D = d,Θ = θ)] is not identifiable from P(X,Y |do(D = d′,Θ = θ′)), then there
exist M1 and M2 such that PM1(X,Y |do(D = d′,Θ = θ′)) = PM2(X,Y | do(D = d′,Θ = θ′))
and EM1 [Y |X,do(D = d,Θ = θ)] ̸= EM2 [Y |X,do(D = d,Θ = θ)]. Let x′ be such that
EM1 [Y |X = x′,do(D = d,Θ = θ)] ̸= EM2 [Y |X = x′,do(D = d,Θ = θ)] and let M̃1, M̃2 be
equal to the SCMs M1,M2, except for the structural equation for X , which is set to X = x′ in both
M̃1 and M̃2. Then we still have PM̃1

(X,Y |do(D = d′,Θ = θ′)) = PM̃2
(X,Y |do(D = d′,Θ =

θ′)), and EM̃1
[Y |do(D = d,Θ = θ)] = EM̃1

[Y |X = x′,do(D = d,Θ = θ)] ̸= EM̃2
[Y |X =

x′,do(D = d,Θ = θ)] = EM̃2
[Y |do(D = d,Θ = θ)], so E[Y | do(D = d,Θ = θ)] is not

identifiable from P(X,Y |do(D = d′,Θ = θ′)).

Proof [Proposition 9] Let θ, θ′ ∈ R, d, d′ ∈ {0, 1} be given, and consider for i = 1, 2 the SCM Mi

given by X ∼ N (0, 1), Ŷ = Θ·X+i·1{Θ ̸= θ′}, Y = X+1{D = 1}·Ŷ +i·1{D ̸= d′}. One can
readily verify that PM1(X,Y |do(D = d′,Θ = θ′)) = PM2(X,Y |do(D = d′,Θ = θ′)), but that
EM1 [Y |X,do(D = d,Θ = θ)] = 1+X ̸= 2+X = EM2 [Y |X,do(D = d,Θ = θ)] if d = 0, that
EM1 [Y |X,do(D = d,Θ = θ)] = (θ+1)X+1 ̸= (θ+1)X+2 = EM2 [Y |X,do(D = d,Θ = θ)]
if d = 1 and either d = d′ or θ = θ′, and that EM1 [Y |X,do(D = d,Θ = θ)] = (θ + 1)X + 2 ̸=
(θ + 1)X + 4 = EM2 [Y |X,do(D = d,Θ = θ)] if d = 1 and both d ̸= d′ and θ ̸= θ′.

Proof [Proposition 11] That Y ⊥⊥D,Θ |X,Z implies identifiability (under the required positivity
assumption) is immediate from equation (8).

If Y ⊥̸⊥D |X,Z, we note that for all Z ′ ∈ Z, we cannot have X → Z ′ → Ŷ as this violates
Assumption 1. If there is an edge Ŷ → Y , we can augment the constructed M1,M2 from the proof of
Proposition 9 where we let all Z ′ ∈ Z be independent variables having the same distribution in both
models, which proves non-identifiability in that setting. The last case to check is where every directed
path from Ŷ to Y contains at least one element from Z. Since we have Y ̸⊥d

G′ D |X,Z, there is
at least one such a path π = Ŷ → Z1 → ... → Zn → Y for some n ∈ N with Z1, ..., Zn ∈ Z
and Z1 ↔ Y in G′. We define M1 by letting X ∼ Ber(1/2), Ŷ = X,EZ1 ∼ Ber(1/2), EZ1Y ∼
Ber(1/2), Z1 = 1{D ̸=d} ·XOR(D,EZ1Y )+1{D=d} ·XOR(D,EZ1), Zi+1 = Zi for i = 1, ..., n−1,
and Y = XOR(Zn, EZ1Y ). We let all other variables in Z be independent. Define M2 to be equal
to M1, with the only difference that Z1 = XOR(D,EZ1Y ). Then indeed P1(X,Y, Z | do(D =
d′,Θ)) = P2(X,Y, Z | do(D = d′,Θ)), P1(X,Z | do(D = d,Θ)) = P2(X,Z | do(D = d,Θ))
and E1[Y |X,do(D = d,Θ)] = d ̸= 1/2 = E2[Y |X,do(D = d,Θ)], proving non-identifiability.
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