1 & UNIVERSITY
1 & UNIVERSITY
1 ANGERICIAL STANGERICAL STANGERICAL STANGERICAL STANGERIC STANGERIC STANGERIC STANGERIC in the total variation metric

Philip Boeken¹² ¹² Patrick Forré¹ Joris M. Mooij¹

A *Bayesian network* is a Directed Acyclic Graph (DAG) $G = (V, E)$, with Markov kernel $\mathbb{P}(X_v | X_{\text{pa}(v)})$, e.g.

For any Bayesian network over DAG G with observational distributi *Markov property* holds:

 $\mathbb{P}(X_A)$ $\mathbb{P}(X_B | X_A)$ $\mathbb{P}(X_C | X_A, X_B)$

which induces a joint distribution

$$
\mathbb{P}(X_V) := \bigotimes_{v \in V} \mathbb{P}(X_v \,|\, X_{\text{pa}(v)}).
$$

Markov property

Consider the Bayesian network with the graph at the top of the page, kernels induced by

with $\varepsilon_A, \varepsilon_B, \varepsilon_C$ independent. We have $A \not\perp_G^d C$. If $\beta_{AC} = -\beta_{AB}\beta_{BC}$, then $X_A \!\perp\!\!\!\perp X_C$ in which case the Bayesian network is *unfaithful*.

$$
A\overset{d}{\underset{G}{\perp}}B \mid C \implies X_A \underset{\mathbb{P}}{\perp} X_B \mid X_C
$$

for all $A, B, C \subseteq V$ [\[5\]](#page-0-0).

Other types of faithfulness violations exist, e.g. because of determinis deterministic relations.

Faithfulness

A Bayesian network is called *faithful* if for all $A, B, C \subseteq V$ we have

$$
A \nsubseteq_{G}^{d} B \mid C \implies X_A \nsubseteq_{\mathbb{P}}^{d} X_B \mid X_C.
$$

Faithfulness violations

$$
X_A = \varepsilon_A
$$

\n
$$
X_B = \beta_{AB} X_A + \varepsilon_B
$$

\n
$$
X_C = \beta_{AC} X_A + \beta_{BC} X_B + \varepsilon_C
$$

d $\frac{1}{\alpha}$ *G B* | *C*}*.*

onstructed (up to a certain equivawrong causal conclusions from the

ilts

actice it is often *motivated* by the

ers of linear Gaussian Bayesian net*zero.* [\[4\]](#page-0-1)

discrete Bayesian networks, as a

analogues exist in the literature.

 ϕ ace for every $v \in V$, and let $\mathcal{P}(\mathcal{X}_V)$

Markov property w.r.t. G

 $-\mathbb{Q}(A)|.$

pty, dense and open set, and the

is typical if it is the complement of

So faithful are total variation metric.

 $F_G = \bigcap (M_G \setminus I_{AB|C})$ $A \not\perp_G^d B \mid C$ $=M_G \setminus F_G$ ∗) ⊆

$$
U_G:
$$

We can write F_G as a countable intersection where $I_{AB|C} := \{ \mathbb{P} \in \mathcal{P}(\mathcal{X}_V) : X_A \perp \!\!\!\perp_{\mathbb{P}} X_B | X_C \}.$ **Theorem** (Lauritzen, 2024) $I_{AB|C}$ is closed in the total variation metric [\[2\]](#page-0-4). In particular, F_G is open. Now we show that each $M_G \setminus I_{AB|C}$ is dense: **Theorem** Let $A \not\perp_G^d B \mid C$, then for any $\mathbb{P}_0 \in I_{AB|C}$ there exists a net $(\mathbb{P}_\lambda)_{\lambda \in (0,\lambda)}$ $M_G \setminus I_{AB|C}$ such that $\mathbb{P}_{\lambda} \to \mathbb{P}_{0}$ as $\lambda \to 0$.

1. There exists a $\mathbb{P}_1 \in M_G \setminus I_{AB|C}$. 2. Define

Theorem Given an acyclic directed mixed graph *G*^p with vertices *V* , for any DAG *G* with vertices $V \cup W$ such that G^{p} is the latent projection of G onto V , the set of the Bayesian networks over *G* that are unfaithful with respect to *G*^p are nowhere dense.

[3] Christopher Meek. Strong completeness and faithfulness in Bayesian networks. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI'95, page 411-418, San Francisco, CA, USA, 1995. Morg [5] Thomas Verma and Judea Pearl. Causal Networks: Semantics and Expressiveness. In Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal, and John F. Lemmer, editors, Machine Intelligence and Pattern Recognition, volume 9 of U

Theorem The set of parameters of linear Gaussian or discrete Bayesian networks with latent variables that are unfaithful to latent projection G^p is nowhere dense and measure-zero.

Booking.com

Proof sketch

3. There exists a $\lambda^* \in (0,1)$ such that $X_A \not\perp \!\!\!\perp_{\mathbb P_{\lambda}} X_B | X_C$ for all $\lambda \in (0,\lambda^*)$, i.e.

$$
\mathbb{P}_{\lambda}(X_V) := \bigotimes_{v \in V} \left((1 - \lambda) \mathbb{P}_{0}(X_v \,|\, X_{\text{pa}(v)}) + \lambda \mathbb{P}_{1}(X_v \,|\, X_{\text{pa}(v)}) \right),
$$

then $\mathbb{P}_{\lambda} \in M_G$.

- $(\mathbb{P}_{\lambda})_{\lambda \in (0,\lambda^*)} \subseteq M_G \setminus I_{AB|C}.$
- 4. We have $\mathbb{P}_{\lambda} \to \mathbb{P}_{0}$ as $\lambda \to 0$.

Finite intersections of dense open sets are dense, so *F^G is dense*. Complements of dense, open sets are nowhere dense, so *U^G is nowhere dense*.

Further results

Theorem Unfaithful parameters of linear Gaussian or discrete Bayesian networks are

nowhere dense in R *m*.

Often there are unobserved variables, and the (causal) relations between the observed variables are modelled with an acyclic directed mixed graph called the *latent projection*:

(b) Latent projection *G*^p

- [2] Steffen Lauritzen. Total variation convergence preserves conditional independence. *Statistics & Probability Letters*, 214:110200, November 2024.
-
- [4] Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, Prediction, and Search*, volume 81 of *Lecture Notes in Statistics*. Springer, New York, NY, 1993.
-

fulness?

network with DAG *G*,

all conditional (in)dependencies in the set of all *d*-separations in the

^[1] Alexander Kechris. *Classical descriptive set theory*. Springer, 1995.