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Bayesian networks

A Bayesian network is a Directed Acyclic Graph (DAG) G = (V, E), with for all v ∈ V a

Markov kernel P(Xv | Xpa(v)), e.g.

A

B

C P(XA)

P(XB | XA)

P(XC | XA, XB),

which induces a joint distribution

P(XV ) :=
⊗
v∈V

P(Xv | Xpa(v)).

Markov property

For any Bayesian network over DAG G with observational distribution P the global

Markov property holds:

A
d

⊥
G

B | C =⇒ XA ⊥⊥
P

XB | XC

for all A, B, C ⊆ V [5].

Faithfulness

A Bayesian network is called faithful if for all A, B, C ⊆ V we have

A
d

6⊥
G

B | C =⇒ XA 6⊥⊥
P

XB | XC.

Faithfulness violations

Consider the Bayesian network with the graph at the top of the page, and the Markov

kernels induced by

XA = εA

XB = βABXA + εB

XC = βACXA + βBCXB + εC

with εA, εB, εC independent. We have A 6⊥d
G C . If βAC = −βABβBC , then XA ⊥⊥ XC in

which case the Bayesian network is unfaithful.

Other types of faithfulness violations exist, e.g. because of deterministic variables, or

deterministic relations.

Why care about faithfulness?

Given a finite sample from P(XV ) from a Bayesian network with DAG G,

constraint-based causal discovery methods test for all conditional (in)dependencies in

the data. Assuming faithfulness, this characterises the set of all d-separations in the

underlying DAG:

{(A, B, C) : XA ⊥⊥
P

XB | XC} = {(A, B, C) : A
d

⊥
G

B | C}.

From this set of d-separations, the graph G is reconstructed (up to a certain equiva-

lence). If faithfulness does not hold, one may draw wrong causal conclusions from the

constructed graph.

Genericity results

Faithfulness is an untestable assumption. In practice it is often motivated by the

following results:

Theorem (Spirtes et al., 1993) Unfaithful parameters of linear Gaussian Bayesian net-

works, as a subset of Rm, have Lebesgue measure zero. [4]

Theorem (Meek, 1995) Unfaithful parameters of discrete Bayesian networks, as a

subset of Rm, have Lebesgue measure zero. [3]

To our knowledge, no nonparametric extensions or analogues exist in the literature.

Main result

Let a DAG G be given, let Xv be a standard Borel space for every v ∈ V , and let P(XV )
be the space of all probability measures on XV . Define

MG := {P ∈ P(XV ) : P satisfies the global Markov property w.r.t. G}
FG := {P ∈ MG : P is faithful w.r.t. G}
UG := {P ∈ MG : P is unfaithful w.r.t. G}

Equip MG with the total variation metric

dTV (P,Q) := sup
A∈B(XV )

|P(A) − Q(A)|.

Theorem:

The set of faithful distributions FG is a non-empty, dense and open set, and the

unfaithful distributions UG are nowhere dense.

Definition Given a topological space P a set F ⊆ P is typical if it is the complement of

a countable union of nowhere dense sets [1].

So faithful Bayesian networks are typical with respect to the total variation metric.

Proof sketch

We can write FG as a countable intersection

FG =
⋂

A 6⊥d
G B | C

(MG \ IAB|C)

UG = MG \ FG

where IAB|C := {P ∈ P(XV ) : XA ⊥⊥P XB | XC}.
Theorem (Lauritzen, 2024) IAB|C is closed in the total variation metric [2].

In particular, FG is open. Now we show that each MG \ IAB|C is dense:

Theorem Let A 6⊥d
G B | C , then for any P0 ∈ IAB|C there exists a net (Pλ)λ∈(0,λ∗) ⊆

MG \ IAB|C such that Pλ → P0 as λ → 0.

1. There exists a P1 ∈ MG \ IAB|C.

2. Define

Pλ(XV ) :=
⊗
v∈V

(
(1 − λ)P0(Xv | Xpa(v)) + λP1(Xv | Xpa(v))

)
,

then Pλ ∈ MG.

3. There exists a λ∗ ∈ (0, 1) such that XA 6⊥⊥Pλ
XB | XC for all λ ∈ (0, λ∗), i.e.

(Pλ)λ∈(0,λ∗) ⊆ MG \ IAB|C.

4. We have Pλ → P0 as λ → 0.

Finite intersections of dense open sets are dense, so FG is dense. Complements of

dense, open sets are nowhere dense, so UG is nowhere dense.

Further results

Theorem Unfaithful parameters of linear Gaussian or discrete Bayesian networks are

nowhere dense in Rm.

Often there are unobserved variables, and the (causal) relations between the observed

variables are modelled with an acyclic directed mixed graph called the latent projection:

A B

L1

L2 C

(a) DAG G

A B C

(b) Latent projection Gp

Theorem Given an acyclic directed mixed graph Gp with vertices V , for any DAG G
with vertices V ∪ W such that Gp is the latent projection of G onto V , the set of the

Bayesian networks over G that are unfaithful with respect to Gp are nowhere dense.

Theorem The set of parameters of linear Gaussian or discrete Bayesian networks

with latent variables that are unfaithful to latent projection Gp is nowhere dense and

measure-zero.
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