

A Bayesian network is a Directed Acyclic Graph (DAG) G = (V, E), with Markov kernel $\mathbb{P}(X_v \mid X_{\mathrm{pa}(v)})$, e.g.

 $\mathbb{P}(X_A)$ $\mathbb{P}(X_B \mid X_A)$ $\mathbb{P}(X_C \mid X_A, X_B),$

which induces a joint distribution

$$\mathbb{P}(X_V) := \bigotimes_{v \in V} \mathbb{P}(X_v \mid X_{\mathrm{pa}(v)}).$$

Markov property

For any Bayesian network over DAG G with observational distributi Markov property holds:

$$A \stackrel{d}{\underset{G}{\perp}} B \mid C \implies X_A \stackrel{\#}{\underset{\mathbb{P}}{\boxplus}} X_B \mid X_C$$

for all $A, B, C \subseteq V$ [5].

Faithfulness

A Bayesian network is called *faithful* if for all $A, B, C \subseteq V$ we have

$$A \not \stackrel{d}{\not L} B \mid C \implies X_A \not \stackrel{I}{\not L} X_B \mid X_C.$$

Faithfulness violations

Consider the Bayesian network with the graph at the top of the page, kernels induced by

$$X_{A} = \varepsilon_{A}$$

$$X_{B} = \beta_{AB}X_{A} + \varepsilon_{B}$$

$$X_{C} = \beta_{AC}X_{A} + \beta_{BC}X_{B} + \varepsilon_{C}$$

with $\varepsilon_A, \varepsilon_B, \varepsilon_C$ independent. We have $A \not\perp_G^d C$. If $\beta_{AC} = -\beta_{AB}\beta_{BC}$, t which case the Bayesian network is unfaithful.

Other types of faithfulness violations exist, e.g. because of determinis deterministic relations.

- [2] Steffen Lauritzen. Total variation convergence preserves conditional independence. *Statistics & Probability Letters*, 214:110200, November 2024.
- [4] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search, volume 81 of Lecture Notes in Statistics. Springer, New York, NY, 1993.

p.a.boeken@uva.nl

Nonparametric Bayesian networks are typically faithful in the total variation metric

Patrick Forré¹ Philip Boeken¹² Joris M. Mooij¹

	Why care about faith
th for all $v \in V$ a	Given a finite sample from $\mathbb{P}(X_V)$ from a Bayesian
	constraint-based causal discovery methods test for the data. Assuming faithfulness, this characterises underlying DAG:
	$\{(A, B, C) : X_A \coprod_{\mathbb{P}} X_B X_C\} = \{(A, B, C) : X_C\} = \{(A$
	From this set of d -separations, the graph G is reco lence). If faithfulness does not hold, one may draw constructed graph.
	Genericity resu
	Faithfulness is an untestable assumption. In pra following results:
tion ₽ the global	Theorem (Spirtes et al., 1993) Unfaithful parameter works, as a subset of \mathbb{R}^m , have Lebesgue measure \mathbb{R}^m
	Theorem (Meek, 1995) Unfaithful parameters of subset of \mathbb{R}^m , have Lebesgue measure zero. [3]
	To our knowledge, no nonparametric extensions or
	Main result
	Let a DAG G be given, let \mathcal{X}_v be a standard Borel sp be the space of all probability measures on \mathcal{X}_V . De
	$M_G := \{ \mathbb{P} \in \mathcal{P}(\mathcal{X}_V) : \mathbb{P} \text{ satisfies the global } I \\ F_G := \{ \mathbb{P} \in M_G : \mathbb{P} \text{ is faithful w.r.t. } G \} \\ U_G := \{ \mathbb{P} \in M_G : \mathbb{P} \text{ is unfaithful w.r.t. } G \}$
and the Markov	Equip M_G with the total variation metric
	$d_{TV}(\mathbb{P}, \mathbb{Q}) := \sup_{A \in \mathcal{B}(\mathcal{X}_V)} \mathbb{P}(A)$
hen $X_A \parallel X_C$ in	Theorem: The set of faithful distributions F_G is a non-emponent unfaithful distributions U_G are nowhere dense.
stic variables, or	Definition Given a topological space P a set $F \subseteq P$ a countable union of nowhere dense sets [1].
	So faithful Bayesian networks are typical with resp

[3] Christopher Meek. Strong completeness and faithfulness in Bayesian networks. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI'95, page 411–418, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[5] Thomas Verma and Judea Pearl. Causal Networks: Semantics and Expressiveness. In Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal, and John F. Lemmer, editors, Machine Intelligence and Pattern Recognition, volume 9 of Uncertainty in Artificial Intelligence, pages 69–76. North-Holland, January 1990.

fulness?

network with DAG G,

all conditional (in)dependencies in the set of all *d*-separations in the

$$B, C) : A \stackrel{d}{\underset{G}{\perp}} B \,|\, C \}.$$

constructed (up to a certain equivawrong causal conclusions from the

lts

actice it is often *motivated* by the

ers of linear Gaussian Bayesian netzero. [4]

discrete Bayesian networks, as a

analogues exist in the literature.

bace for every $v \in V$, and let $\mathcal{P}(\mathcal{X}_V)$ efine

Markov property w.r.t. G

 $-\mathbb{Q}(A)|.$

pty, dense and open set, and the

is *typical* if it is the complement of

ect to the total variation metric.

 $F_G = \bigcap (M_G \setminus I_{AB|C})$ $A \not\perp^d_G B \mid C$ $= M_G \setminus F_G$

$$U_G$$
 :

We can write F_G as a countable intersection where $I_{AB|C} := \{ \mathbb{P} \in \mathcal{P}(\mathcal{X}_V) : X_A \perp \mathbb{L}_{\mathbb{P}} X_B \mid X_C \}.$ **Theorem** (Lauritzen, 2024) $I_{AB|C}$ is closed in the total variation metric [2]. In particular, F_G is open. Now we show that each $M_G \setminus I_{AB|C}$ is dense: **Theorem** Let $A \not\perp_G^d B \mid C$, then for any $\mathbb{P}_0 \in I_{AB\mid C}$ there exists a net $(\mathbb{P}_{\lambda})_{\lambda \in (0,\lambda^*)} \subseteq$ $M_G \setminus I_{AB|C}$ such that $\mathbb{P}_{\lambda} \to \mathbb{P}_0$ as $\lambda \to 0$.

1. There exists a $\mathbb{P}_1 \in M_G \setminus I_{AB|C}$. 2. Define

$$\mathbb{P}_{\lambda}(X_V) := \bigotimes_{v \in V} \left((1$$

then $\mathbb{P}_{\lambda} \in M_G$.

- $(\mathbb{P}_{\lambda})_{\lambda \in (0,\lambda^*)} \subseteq M_G \setminus I_{AB|C}.$
- 4. We have $\mathbb{P}_{\lambda} \to \mathbb{P}_0$ as $\lambda \to 0$.

Finite intersections of dense open sets are dense, so F_G is dense. Complements of dense, open sets are nowhere dense, so U_G is nowhere dense.

nowhere dense in \mathbb{R}^m .

Often there are unobserved variables, and the (causal) relations between the observed variables are modelled with an acyclic directed mixed graph called the *latent projection*:

Theorem Given an acyclic directed mixed graph G^p with vertices V, for any DAG G with vertices $V \cup W$ such that G^p is the latent projection of G onto V, the set of the Bayesian networks over G that are unfaithful with respect to G^p are nowhere dense.

Theorem The set of parameters of linear Gaussian or discrete Bayesian networks with latent variables that are unfaithful to latent projection G^p is nowhere dense and measure-zero.

²**Booking.com**

Proof sketch

$$(-\lambda)\mathbb{P}_0(X_v \,|\, X_{\mathrm{pa}(v)}) + \lambda \mathbb{P}_1(X_v \,|\, X_{\mathrm{pa}(v)}))\,,$$

Further results

Theorem Unfaithful parameters of linear Gaussian or discrete Bayesian networks are

(b) Latent projection $G^{\rm p}$

^[1] Alexander Kechris. Classical descriptive set theory. Springer, 1995.