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Abstract

We show that for a given DAG G, among all observational distributions of Bayesian
networks over G with arbitrary outcome spaces, the faithful distributions are ‘typical’: they
constitute a dense, open set with respect to the total variation metric. As a consequence,
the set of faithful distributions is non-empty, and the unfaithful distributions are nowhere
dense. We extend this result to the space of Bayesian networks, where the properties
hold for Bayesian networks instead of distributions of Bayesian networks. As special
cases, we show that these results also hold for the faithful parameters of the subclasses
of linear Gaussian– and discrete Bayesian networks, giving a topological analogue of the
measure-zero results of Spirtes et al. (1993) and Meek (1995). Finally, we extend our
topological results and the measure-zero results of Spirtes et al. and Meek to Bayesian
networks with latent variables.

1 Introduction

Given a Bayesian network over a DAG G with variables V and a finite sample from its
distribution P(XV ), the task of causal discovery algorithms is to infer the graph G from the data.
Constraint-based causal discovery methods do so by testing for conditional (in)dependencies
XA⊥⊥PXB |XC for multiple choices of A,B,C ⊆ V , and use this information to reconstruct G
(up to certain equivalences). A core assumption of almost all constraint-based causal discovery
algorithms is that a correctly inferred set of conditional independencies in P(XV ) characterises
the corresponding set of d-separations in G: for all subsets of vertices A,B,C ⊆ V we have

A
d

⊥
G
B |X ⇐⇒ XA⊥⊥

P
XB |XC . (1)

The implication from left to right holds for all Bayesian networks, and is called the Markov
property. The implication from right to left does not always hold: there exist Bayesian networks
which have conditional independencies that are not due to a corresponding d-separation in the
graph – instead, they might be due to cancelling paths, deterministic variables, or deterministic
relations (see Example 3 below). A Bayesian network for which (1) holds is called faithful.

In absence of any knowledge of the true causal graph, faithfulness is an untestable assumption
(Zhang and Spirtes, 2008). In practice, this assumption is often motivated by theoretical results
that for certain parametric models, the faithful distributions are ‘typical’. For a given DAG G,
Spirtes et al. (1993) and Meek (1995) consider specific parametrisations ΘN and ΘD of linear
Gaussian and discrete Bayesian networks respectively (which are subsets of Rd for appropriate
d ∈ N) and show that drawing from ΘN or ΘD at random will give with probability one a
faithful Bayesian network:

Theorem 1 (Spirtes et al. (1993)). With respect to Lebesgue measure over ΘN , the set of
parameters whose distribution is unfaithful to G is measure-zero.

Theorem 2 (Meek (1995)). With respect to Lebesgue measure over ΘD, the set of parameters
whose distribution is unfaithful to G is measure-zero.
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To our knowledge, no such results are available for other parametric or nonparametric classes
of distributions. In this work we prove such a result: without restriction to any parametric
or nonparametric class of distributions, the faithful distributions are typical. As there is no
canonical analogue of the Lebesgue measure for the (nonparametric) space of Bayesian networks,
we don’t consider the measure-theoretic notion of typicality but instead consider a topological
notion. Our main result is as follows:

For a given DAG G, among all distributions that are Markov with respect
to G, the faithful distributions constitute a dense, open set.

As a consequence, the set of faithful distributions is non-empty, and unfaithful distributions
are nowhere dense (defined below) and are thus ‘atypical’. The topological properties are with
respect to the total variation metric on the joint distribution P(XV ) of all variables V of the
Bayesian network. Our result holds for any choice of standard Borel outcome spaces; it holds in
particular for continuous variables XV ∈ R|V |, discrete variables XV ∈ Z|V |, and mixed data.

Considering nowhere dense sets as a notion of atypicality stands on the following theoretical
footing. Given a set M , ‘small’ subsets of M are characterised by so-called σ-ideals: collections
of subsets of M containing ∅, which are closed under taking subsets and countable unions. The
family of Lebesgue measure 0 sets as considered by Spirtes et al. (1993) and Meek (1995) is a
σ-ideal, and so is the family of meager sets:

Definition 1. A set I ⊆M is dense in another set F ⊆M if every point in F is in I or is a
limit point of I. The set I is nowhere dense if there is no open subset of M in which I is dense,
and it is meager if it is a countable union of nowhere dense sets.

The boundary of every open or closed set is nowhere dense, and subsets of nowhere dense
sets are nowhere dense. Complements of dense sets are not necessarily nowhere dense or meager
(see Example 1), but complements of dense, open sets are nowhere dense. Comeager sets
(complements of meager sets) are commonly referred to as typical (Kechris, 1995). We show that
unfaithful distributions are nowhere dense, which is an even a stronger notion of atypicality.

Example 1. The set of integers Z is nowhere dense in R, and the rationals Q are meager in R.
Example 2. A straightforward proof of the existence of nowhere differentiable continuous
functions is to show that they are comeager in the space of continuous functions, hence dense,
hence non-empty.1

We will use a similar reasoning to prove the existence of faithful distributions: they are the
complement of a nowhere dense set, hence dense, hence non-empty.

In causality, the σ-ideal of meager sets is considered by Ibeling and Icard (2021), who show
that discrete causal models for which Pearl’s Causal Hierarchy collapses2 are meager, which is a
topological analogue of the Lebesgue measure-zero result from Bareinboim et al. (2022).

The contribution and outline of this paper is as follows. In Section 2 we provide some
technical prerequisites about Bayesian networks and the total variation metric. In Section 3 we
state and prove our main result: that faithful distributions are dense and open. In Section 4 we
lift this result from the space of observational distributions to the space of Bayesian networks, i.e.
the space of tuples of conditional distributions that define the Bayesian networks. In Section 4.1
we focus on finite dimensional parametrisations of Bayesian networks, and we specifically prove
the topological analogue of the measure-zero results of Spirtes et al. and Meek for linear Gaussian
and discrete Bayesian networks. In Section 5 we extend our (non)parametric topological results
and the parametric measure-zero results of Spirtes et al. and Meek to Bayesian networks with
latent variables.

1This result uses the Baire Category Theorem: comeager subsets of complete metric spaces are dense.
2A structural causal model ‘collapses’ when all counterfactual (interventional) distributions are identifiable

from interventional (observational) distributions.
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2 Technical prerequisites

A directed acyclic graph (DAG) is a tuple G = (V,E) with V a finite set of vertices and E ⊂ V ×V
a set of directed edges. Given such a finite index set V , let XV =

∏
v∈V Xv be a product of

separable complete metric spaces, each equipped with the Borel σ-algebra B(Xv) (which are
standard Borel spaces), and let P(XV ) be the set of probability measures on XV . Random
variables will be denoted with XV , and their values with xV . For A,B ⊆ V , a Markov kernel
P(XB |XA) is a measurable map XA → P(XB), where P(XB) is equipped with the smallest σ-
algebra that makes for all D ∈ B(XB) the evaluation map evD : P(XB)→ [0, 1],P 7→ P(XB ∈ D)
measurable. For Markov kernels P(XA |XB),P(XB |XC), their product is defined as the Markov
kernel

P(XA |XB)⊗ P(XB |XC) : XC → P(XA∪B), xC 7→
(
D 7→

∫
D

dP(xA |xB)dP(xB |xC)

)
where D ∈ B(XA∪B). Since XV is standard Borel, there exists for any A,B ⊆ V and joint
distribution P(XA, XB) a Markov kernel (often referred to as conditional distribution) P(XB |XA)
such that P(XA, XB) = P(XB |XA)⊗P(XA). Given distribution P ∈ P(XV ) and sets A,B,C ⊆
V , we say that XA is conditionally independent of XB given XC , written XA⊥⊥PXB |XC , if
P(XA, XB |XC) = P(XA |XC)⊗ P(XB |XC) holds P(XC) almost surely.3

Writing pa(v) for the set of parents of v in G, a Bayesian network over G is defined as a tuple
of Markov kernels (P(Xv |Xpa(v)))v∈V . The joint distribution P(XV ) =

⊗
v∈V P(Xv |Xpa(v)) is

referred to as the observational distribution. Given DAG G with path π = a ... b, a
collider is a vertex v with ... → v ← ... in π. For sets of vertices A,B,C ⊆ V we say that A
and B are d-separated given C, written A⊥d

GB |C, if for every path π = a ... b between
every a ∈ A and b ∈ B, there is a collider on π that is not an ancestor of C, or if there is a
non-collider on π in C.

Theorem 3 (Verma and Pearl (1990)). For any Bayesian network over DAG G with observa-
tional distribution P the global Markov property holds:

A
d

⊥
G
B |C =⇒ XA⊥⊥

P
XB |XC (2)

for all A,B,C ⊆ V .

In general, the set of all conditional independencies in P does not characterise the set
of d-separations in G: we might have a d-connection A ̸⊥d

GB |C but still have a conditional
independence XA⊥⊥PXB |XC . A Bayesian network is called faithful if these cases are excluded:

Definition 2. A Bayesian network is called faithful if for all A,B,C ⊆ V we have

A
d

̸⊥
G
B |C =⇒ XA⊥̸⊥

P
XB |XC .

Example 3. The following Bayesian networks are unfaithful. Corresponding graphs are shown in
Figure 1.

a) Cancelling paths: let P(XA) be any distribution and let P(XB |XA) = N (βABXA, σ
2
B),

P(XC |XA, XB) = N (βACXA + βBCXB, σ
2
C) for given parameters σ2

A, σ
2
B, σ

2
C > 0 and

βAC , βAB, βBC ∈ R with βAC = −βABβBC . Then A ̸⊥d
Ga C and XA⊥⊥XC .

4

3This is equivalent to independence of the σ-algebras σ(XA)⊥⊥P σ(XB) |σ(XC) or, if P(XA, XB , XC) has a
density p(xA, xB , xC), to p(xA, xB |xC) = p(xA |xC)p(xB |xC) for all xA, xB , xC with p(xC) > 0.

4A realistic example of this phenomenon is when opening a window (A) and subsequently turning up the
heating (B) has no net effect on room temperature (C).
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(a) DAG Ga
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B

C

(b) DAG Gb

A

D

B
C

(c) DAG Gc

Figure 1: DAGs of the Bayesian networks given in Example 3.

b) Deterministic variables: let P(XA |XB) and P(XC |XB) be Markov kernels and let P(XB) =
δxB

for some xB ∈ XB, so XB deterministically has the value xB. Then we have A ̸⊥d
Gb C

and XA⊥⊥XC .

c) Deterministic relations: let P(XA |XD) and P(XC |XD) be Markov kernels and P(XD)
any distribution and let P(XB |XD) = δXD

, so we deterministically set XB = XD. Then
we have A ̸⊥d

Gc C |B and XA⊥⊥XC |XB.
5

As an important step in the proof of the typicality of faithful distributions, we use that
conditional independence is a preserved under taking limits. However, whether this holds
depends on the particular choice of the topology on P(XV ). A well-known topology is the
one related to weak convergence: given probability measures P,P1,P2, ... ∈ P(XV ) we say that
Pn converges weakly to P (also known as convergence in distribution) if EPn [f ] → EP[f ] for
all bounded, continuous functions f : XV → [−1, 1]. However, weak convergence does not
necessarily preserve conditional independence: for a weakly convergent sequence Pn → P with
XA⊥⊥Pn XB |XC for all n ∈ N, we might have XA⊥̸⊥PXB |XC ; see e.g. Lauritzen (1996), pp.
38-39. Instead of weak convergence, we consider a different type of convergence:

Definition 3. The total variation metric dTV on P(XV ) is defined as

dTV (P,Q) := sup
A∈B(XV )

|P(A)−Q(A)|.

Convergence in this metric is denoted by Pn
tv→ P. It is equivalent to convergence EPn [f ]→

EP[f ] uniformly over all bounded measurable functions f : XV → [−1, 1], so it is (much) stronger
than weak convergence. By Lauritzen (2024) we have the following result:

Theorem 4 (Lauritzen (2024)). Given probability measures P,P1,P2, ... ∈ P(XV ) such that

Pn
tv→ P, if we have XA⊥⊥Pn XB |XC for all n ∈ N, then also XA⊥⊥PXB |XC.

3 Typicality of faithful distributions of Bayesian networks

Given a DAG G = (V,E), we consider the following sets of Markov, faithful, and unfaithful
distributions relative to G:

MG :=

{
P ∈ P(XV ) : A

d

⊥
G
B |C =⇒ XA⊥⊥

P
XB |XC for all A,B,C ⊆ V

}
(3)

FG :=

{
P ∈MG : A

d

̸⊥
G
B |C =⇒ XA⊥̸⊥

P
XB |XC for all A,B,C ⊆ V

}
(4)

UG := MG \ FG. (5)

We will derive properties of FG and UG as subsets of the (complete) metric space (MG, dTV ).

5For Bayesian networks with known deterministic variables or relations, Geiger et al. (1990) introduced the
stronger D-separation criterion.
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Theorem 5. The set of faithful distributions FG is a non-empty, dense and open set, and the
unfaithful distributions UG are nowhere dense.

The proof refers to some technical lemmas that are given in Section 3.1.

Proof. First, we show for any given A,B,C ⊆ V with A ̸⊥d
G B |C that MG \ IA,B,C is dense

and open, where we write IA,B,C = {P ∈ MG : XA⊥⊥PXB |XC}. By Lemma 1, there exists a
P1 that is Markov and has XA⊥̸⊥P1

XB |XC , so P1 ∈ MG \ IA,B,C . Given any P0 ∈ IA,B,C (so
P0 is unfaithful w.r.t. G) and P1 ∈ MG \ IA,B,C , there exists a net (Pλ)λ∈(0,λ∗) ⊆ MG \ IA,B,C

(Definition 4, Lemma 2) that interpolates between P0 and P1, and which converges in total
variation to P0 as λ→ 0 (Lemma 3), hence MG \ IA,B,C is dense. With this construction, we
approximate any Markov distribution that has a particular faithfulness violation by Markov
distributions that don’t have this violation. By Theorem 4, MG \ IA,B,C is open.

We can write FG =
⋂

A ̸⊥d
G B |C(MG \ IA,B,C) if there is a d-connection A ̸⊥d

GB |C, and
FG = MG otherwise. Hence, FG is a dense open set as it is a finite intersection of dense open
sets. Since MG is non-empty (take for example a product of independent binary distributions),
the dense set FG is non-empty as well, proving the existence of a faithful distribution.

Finally, UG is nowhere dense since it is the complement of a dense open set. ■

To conclude, unfaithful distributions are ‘atypical’: there is no open set of distributions
that are Markov w.r.t. G, in which any faithful distribution in this set can be approximated by
unfaithful ones. This loosely says that there is no ‘cluster’ of unfaithful distributions.

3.1 Proof of Theorem 5

Lemma 1. For any DAG G, standard Borel space XV and subsets A,B,C ⊆ V such that
A ̸⊥d

G B |C, there exists a distribution P ∈MG with the conditional dependence XA⊥̸⊥P XB |XC .

Proof. For each v ∈ V pick an injective fv : {0, 1} → Xv and note that sets fv(0) and fv(1)
are measurable since Xv is standard Borel. We will construct a binary distribution on the
image of fV that has the required dependence. Note that without loss of generality we can
assume that A and B are singletons: any P(XV ) with XA⊥̸⊥PXB |XC also has XA′ ⊥̸⊥PXB′ |XC

for supersets A ⊂ A′ and B ⊂ B′. Also, the given d-connection implies A,B /∈ C. If we have
A = B, for all v ∈ V set P(Xv = fv(0)) = p and P(Xv = fv(1)) = 1 − p for some p ∈ (0, 1).
Then P(XV ) is Markov and XA⊥̸⊥P XB |XC . If A ≠ B, then by Meek (1998) Lemma 3,6 there
exists a binary distribution P̃ on {0, 1}|V | that is Markov with respect to G and which has
the conditional dependence XA⊥̸⊥P̃XB |XC , so there are x̃A, x̃B, x̃C with P̃(x̃C) > 0 such that
P̃(x̃A, x̃B | x̃C) ̸= P̃(x̃A | x̃C)P̃(x̃B | x̃C). Define the pushforward P(XV ) := P̃ ◦ f−1

V , which has

P(XA = fA(x̃A), XB = fB(x̃B) |XC = fC(x̃C))

= P̃(x̃A, x̃B | x̃C) ̸= P̃(x̃A | x̃C)P̃(x̃B | x̃C)

= P(XA = fA(x̃A) |XC = fC(x̃C))P(XB = fB(x̃B) |XC = fC(x̃C))

so indeed XA⊥̸⊥P XB |XC . By a similar reasoning the conditional independence XA⊥⊥P̃XB |XC

implies XA⊥⊥PXB |XC , and thus P ∈MG. ■

Next, we aim to construct an interpolation of P0,P1 ∈ MG within MG. Naively taking a
mixture of the observational distributions does not give a distribution that is Markov with
respect to G, as is shown in the following example:

6Meek (1995) proves this result assuming weak transitivity of binary distributions, which does not hold in
general. Meek (1998) provides a correct proof based on marginal weak transitivity.
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Example 4. Let (Pi(XA |XC),Pi(XB |XC),Pi(XC)) for i ∈ {0, 1} be Bayesian networks with
DAG G as depicted in Figure 2a, which both have XA⊥⊥XB |XC . A mixture of the observational
distributions Pλ(XA, XB, XC) = (1− λ)P0(XA, XB, XC) + λP1(XA, XB, XC) would correspond
to the (A∪B ∪C)-marginal of the Bayesian network (Pα(XA |XC),Pα(XB |XC),Pα(XC),P(α))
with α ∼ Bernoulli(λ). Its graph is depicted in Figure 2b, from which we see that Pλ is
not Markov with respect to G, as we might have XA⊥̸⊥Pλ

XB |XC . Instead, taking a mix-
ture of the conditional distributions of the Bayesian networks corresponds to considering
(PαA

(XA |XC),PαB
(XB |XC),PαC

(XC),P(αA),P(αB),P(αC)) with αA, αB, αC ∼ Bernoulli(λ)
i.i.d., whose (A∪B ∪C)-marginal Pλ(XA, XB, XC) is Markov with respect to G (see Figure 2c).

A

C

B

(a) DAG G

A B

C

α

(b) Non-Markov mixture

A B

C

αA

αC

αB

(c) Markov mixture

Figure 2

The preceding example motivates the following definition:

Definition 4. Given a DAG G and two distributions P0,P1 ∈MG define the interpolation

Pλ(XV ) :=
⊗
v∈V

(
(1− λ)P0(Xv |Xpa(v)) + λP1(Xv |Xpa(v))

)
.

It is immediate that Pλ ∈MG for all λ ∈ [0, 1]. If P0 and P1 have densities p0 and p1 with
respect to some measure Q, then Pλ has a density pλ given by the expansion

pλ(xV ) =
∏
v∈V

(
(1− λ)p0(xv |xpa(v)) + λp1(xv |xpa(v))

)
=

∑
α∈{0,1}d

(1− λ)d−|α|λ|α|pαd
(xvd |xpa(vd))...pα1(xv1)

(6)

where d = |V | and (v1, ..., vd) is a topological ordering of G.

Lemma 2. Given two distributions P0,P1 ∈ MG with independence XA⊥⊥P0 XB |XC and
dependence XA⊥̸⊥P1

XB |XC and the interpolation Pλ from Definition 4, there exists a λ∗ ∈ (0, 1)
such that XA⊥̸⊥Pλ

XB |XC for all λ ∈ (0, λ∗).

Proof. Define Q := P0 + P1, and let p0, p1, pλ be densities of P0,P1 and Pλ with respect to Q.
There exist EA ∈ B(XA), EB ∈ B(XB), EC ∈ B(XC) such that

P1(XA ∈ EA, XB ∈ EB |XC = xC) ̸= P1(XA ∈ EA |XC = xC)P1(XB ∈ EB |XC = xC)

⇐⇒
∫
EA×EB

p1(xA, xB |xC)dQ(xA, xB) ̸=
∫
EA

p1(xA |xC)dQ(xA)

∫
EB

p1(xB |xC)dQ(xB)

⇐⇒
∫
EA×EB

p1(xA, xB, xC)p1(xC)dQ(xA, xB) ̸=
∫
EA

p1(xA, xC)dQ(xA)

∫
EB

p1(xB, xC)dQ(xB)
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and p1(xC) > 0 for all xC ∈ EC .
7 Define

q(λ, xC) :=

∫
EA×EB

pλ(xA, xB, xC)pλ(xC)dQ(xA, xB)

−
∫
EA

pλ(xA, xC)dQ(xA)

∫
EB

pλ(xB, xC)dQ(xB),

so we have q(0, xC) = 0 ̸= q(1, xC) for all xC ∈ EC . From (6) we see that q(λ, xC) is a
non-trivial polynomial in λ for every xC ∈ XC , and so q(λ, xC) ̸= 0 for all λ ∈ (0, λ∗(xC)) with
λ∗(xC) the smallest strictly positive root of the polynomial. Our goal is to show that there is a
λ∗ ∈ (0, 1) (independent of xC) and a set E∗

C ∈ B(XC) with Pλ(E
∗
C) > 0 and q(λ, xC) ̸= 0 for all

λ ∈ (0, λ∗) and all xC ∈ E∗
C , which would imply that XA⊥̸⊥Pλ

XB |XC for all λ ∈ (0, λ∗). Define
En

C := {xC ∈ EC : λ∗(xC) > 1/n}, then E1
C ⊆ E2

C ⊆ ... ⊆ EC with limnQ(En
C) = Q(EC) > 0,

so there exists a N such that Q(En
C) > 0 for all n ≥ N . Setting λ∗ := 1/N and E∗

C := EN
C we

get q(λ, xC) ̸= 0 for all λ ∈ (0, λ∗) for all xC ∈ E∗
C . Since Q≪ Pλ for all λ ∈ (0, 1) we also have

Pλ(E
∗
C) > 0, implying that XA⊥̸⊥Pλ

XB |XC for all λ ∈ (0, λ∗), which is the desired result. ■

Lemma 3. Given two distributions P0,P1 ∈MG and the interpolation Pλ from Definition 4, we

have Pλ
tv→ P0 as λ→ 0.

Proof. Define Q := P0 + P1, and let p0, p1, pλ be densities of P0,P1 and Pλ with respect to Q.
From (6) we get the expression

pλ(xV ) = (1− λ)dp0(xV ) +
∑

α∈{0,1}d
|α|>0

(1− λ)d−|α|λ|α|pαd
(xvd |xpa(vd))...pα1(xv1)

so we have pointwise convergence pλ(xV )→ p0(xV ) as λ→ 0. By Scheffé (1947) we conclude

that Pλ
tv→ P0. ■

4 Typicality of faithful Bayesian networks

In this section we extend Theorem 5 from the space of observational distributions of Bayesian
networks to the space of Bayesian networks:

Definition 5. Given a DAG G with finite index set V , standard Borel XV , define the space of
Bayesian networks as

BNG :=
∏
v∈V

{
P(Xv |Xpa(v)) : Xpa(v) → P(Xv) measurable

}
.

Whether a Bayesian network is faithful depends on its observational distribution P ∈MG.
To formalise the relation between the Bayesian network and the observational distribution we
introduce the following mapping:

Definition 6. The distribution map is defined as

D : BNG →MG, (P(Xv |Xpa(v)))v∈V 7→
⊗
v∈V

P(Xv |Xpa(v)).

7Note that conditional independence does not imply P1(XA ∈ EA, XB ∈ EB |XC ∈ EC) ̸= P1(XA ∈
EA |XC ∈ EC)P1(XB ∈ EB |XC ∈ EC). See also Neykov et al. (2021), p.3.
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We are interested in whether the faithful Bayesian networks D−1(FG) are typical in BNG.
To get a well-defined notion of typicality we require a topology on BNG.

Definition 7. For m0,m1 ∈ BNG, the pseudometric8 d◦ on BNG is defined as

d◦(m0,m1) := dTV (D(m0), D(m1)).

We equip BNG with the topology generated by the open balls B(m, r) := {m′ ∈ BNG :
d◦(m,m′) < r} for all m ∈ BNG and r > 0. Note that this space is not T0, meaning that points
are not necessarily topologically distinguishable. In particular, we have d◦(m0,m1) = 0 for any
two m0,m1 that have the same observational distribution.

A sufficient condition for the faithful Bayesian networks D−1(FG) to be typical is that the
map D : (BN, d◦)→ (M,dTV ) is open and continuous, which is at the core of the main result of
this section:

Theorem 6. The set of faithful Bayesian networks D−1(FG) is a non-empty, dense and open
set, and the unfaithful Bayesian networks D−1(UG) are nowhere dense.

Proof. By Theorem 5, FG is a dense open set. For every P ∈MG we can pick a version of the
tuple of disintegrations (P(Xv |Xpa(v)))v∈V , which is an element of BNG, hence D is surjective.
Since D is surjective, for every P ∈ MG there is a m ∈ BNG such that P = D(m), and so we
have D−1(B(P, r)) = D−1(B(D(m), r)) = B(m, r), so D is continuous, and therefore D−1(FG)
is open as well.

Similarly, we have D(B(m, r)) = B(D(m), r), so D is open. Since FG is dense, for any open
O ⊆ BNG the open set D(O) intersects FG, and so D−1(FG) intersects with O, implying that
D−1(FG) is dense and non-empty.

Finally, D−1(UG) is nowhere dense since it is the complement of a dense open set. ■

4.1 Parametrised subclasses of Bayesian networks

The preceding section begs the question whether the topological typicality of faithful Bayesian
networks also holds for specific parametrisations of Bayesian networks.

Definition 8. A parametrisation of a Bayesian network is a set Θ ⊆ Rd with d ∈ N and a map

φ : Θ→ BNG, θ 7→ (Pθ(Xv |Xpa(v)))v∈V ,

and the corresponding distribution map is defined as

T : Θ→MG, T := D ◦ φ.

Remark 1. Similar to the previous section the question is whether T−1(FG) is typical in Θ – a
sufficient condition is that T is open and continuous. Given the fact that D : BNG → MG is
continuous and open, T is continuous (open) if and only if φ is continuous (open).

In the following sections we treat the linear Gaussian and discrete parametrisations from
Spirtes et al. (1993) and Meek (1995) separately.

8A pseudometric can have d(m,m′) = 0 for m ̸= m′; it is a metric if d(m,m′) > 0 for all m ̸= m′.
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4.1.1 Linear Gaussian

For linear Gaussian Bayesian networks with mean zero, Spirtes et al. (1993) parametrise for
each v ∈ V the conditional distribution P(Xv |xpa(v)) by a linear coefficient βv and a variance
σ2
v . This gives the parameter space

ΘN :=
∏
v∈V

{
(βv, σ

2
v) ∈ R| pa(v)| × R>0

}
,

and the map φN (θ) is described by the correspondence Pθ(Xv |xpa(v)) = N (βT
v xpa(v), σ

2
v) for

each v ∈ V .
For multivariate Gaussians Pθ(XV ), conditional independence XA⊥⊥Pθ

XB |XC with subsets
A,B,C ⊆ V is equivalent to zero partial covariance qAB.C(θ) = 0 (Baba et al., 2004). Spirtes et
al. show that the partial covariance qAB.C(θ) is a polynomial in θ, and that there are θ0, θ1 ∈ ΘN
such that qAB.C(θ0) = 0 ̸= qAB.C(θ1), so qAB.C is non-trivial. The unfaithful parameters can be
expressed as follows:

T−1
N (UG) =

⋃
A ̸⊥d

G B |C

{θ ∈ ΘN : qAB.C(θ) = 0}. (7)

Since the roots of a multivariate real polynomial have Lebesgue measure zero and finite unions
of measure-zero sets have measure zero, we get λ[T−1

N (UG)] = 0. This result immediately extends
to any distribution over ΘN that has a density with respect to Lebesgue measure. As a corollary
the set T−1

N (FG) has strictly positive measure, implying the existence of a faithful linear Gaussian
Bayesian network.

To prove the topological analogue, we cannot employ Remark 1 because TN (ΘN ) is not
open: one can for example approximate standard Gaussian densities with standard Student’s t
densities, which by Scheffé (1947) implies that TN (ΘN ) can be approximated in total variation
by its complement. Instead, we give a direct proof relying on properties of qAB.C :

Theorem 7. The set of faithful parameters T−1
N (FG) is a non-empty, dense and open set, and

the unfaithful parameters T−1
N (UG) are nowhere dense.

Proof. By (7) we can write T−1
N (FG) = ∩A ̸⊥d

G B |C{θ ∈ ΘN : qAB.C ̸= 0} if there is a d-connection

A ̸⊥d
G B |C, and T−1

N (FG) = ΘN otherwise. Since R\{0} is open and qAB.C is continuous, the set
T−1
N (FG) is open. The complement of the set of roots of any non-trivial real polynomial is dense.

Finite intersections of dense, open sets are dense, so T−1
N (FG) is dense, and therefore non-empty.

Finally, T−1
N (UG) is nowhere dense since it is the complement of a dense open set. ■

For any two parameters θ0, θ1 ∈ ΘN with θ0 ̸= θ1 we have TN (θ0) ̸= TN (θ1), so on the set of
linear Gaussian Bayesian networks φN (ΘN ), the pseudometric d◦ is a proper metric.

4.1.2 Discrete

For discrete distributions with finite state space, Meek (1995) considers the parametrisation
φD(θ) described for each v ∈ V by the correspondence Pθ(xv |xpa(v)) = θv,xv ,xpa(v)

for some
parameter θv,xv ,xpa(v)

. This gives the parameter space

ΘD :=
∏
v∈V

{
θv,xv ,xpa(v)

∈ [0, 1] : xv ∈ Xv, xpa(v) ∈ Xpa(v),
∑

xv∈Xv

θv,xv ,xpa(v)
= 1

}
.
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Meek shows for every θ ∈ ΘD and subsets A,B,C ⊆ V that XA⊥⊥Pθ
XB |XC is equivalent to

qA,B,C(θ) = 0 for some non-trivial polynomial qA,B,C : ΘD → R. Similar to the Gaussian case
we express the unfaithful parameters as

T−1
D (UG) =

⋃
A ̸⊥d

G B |C

{θ ∈ ΘD : qA,B,C(θ) = 0}

which implies λ[T−1
D (UG)] = 0. This result also immediately extends to any distribution over ΘD

that has a density with respect to Lebesgue measure. As in the Gaussian case, the set T−1
D (FG)

has strictly positive measure, so there exists a faithful discrete Bayesian network.
For this model class we get the following topological analogue:

Theorem 8. The set of faithful parameters T−1
D (FG) is a non-empty, dense and open set, and

the unfaithful parameters T−1
D (UG) are nowhere dense.

Proof. The proof is analogous to the proof of Theorem 7 and is therefore omitted. ■

For any two parameters θ0 ̸= θ1 ∈ Int(ΘD) we have TD(θ0) ̸= TD(θ1), so on the set φ(Int(ΘD))
of discrete Bayesian networks with strictly positive distributions, the pseudometric d◦ is a proper
metric. On the extreme points of ΘD, this property might be violated.

5 Typicality of faithful Bayesian networks with latent

variables

In practice, the assumption that all variables in the Bayesian network must be observed is often
too restrictive. When certain variables remain unobserved, a suitable modelling class is that of
Bayesian networks with observed variables V and latent variables W . Of particular interest is
the resulting semi-Markovian model over the observed variables.

Given a DAG G over V ∪W , the latent projection of G onto V is the Acyclic Directed Mixed
Graph (ADMG) Gp with vertices V , directed edges a → b if there is a path a → w1 → ... →
wn → b in G with wi ∈ W for all i = 1, ..., n (if any), and bi-directed edges a↔ b if there is a
fork a ← w1 ← ... ← wk → ... → wn → b in G with wi ∈ W for all i = 1, ..., n (Verma, 1993).
An example of a DAG G and its latent projection Gp is given in Figure 3.

A B

L1

L2 C

(a) DAG G

A B C

(b) Latent projection Gp

Figure 3: DAG G and latent projection Gp of G onto {A,B,C}.

The definition of d-separation for ADMGs (also known as m-separation (Richardson, 2003))
employs an extended notion of a collider: given ADMG Gp with path π = a ... b, a
collider is a vertex v with → v ←, ↔ v ←, → v ↔ or ↔ v ↔ in π. As for DAGs, sets of
vertices A and B are d-separated given C in ADMG G, written A⊥d

G B |C, if for every path
π = a ... b between every a ∈ A and b ∈ B, there is a collider in π that is not an ancestor
of C, or if there is a non-collider in π in C. The independence models of G and Gp with respect
to V are equal: for any A,B,C ⊆ V we have A⊥d

GB |C if and only if A⊥d
Gp B |C (Verma,

1993); as a corollary the Markov property (2) also holds for the latent projection Gp of Bayesian
networks with latent variables.
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The question that we consider is whether Bayesian networks with latent variables are typically
faithful to their latent projection. More formally, let G be a DAG over V ∪W , and let Gp be
the latent projection of G onto V . Recall the distribution map D : BNG →MG from Definition
6 and define the observational distribution map

Dp : BNG →MGp , Dp := πV ◦D

where πV : MG → MGp is the projection P(XV ∪W ) 7→ P(XV ). Write MGp , UGp , FGp for the
distributions over XV that are Markov, unfaithful and faithful with respect to the ADMG Gp

respectively, defined similarly as in (3–4).9 We call a Bayesian network m ∈ BNG unfaithful
with respect to the ADMG Gp if Dp(m) ∈ UGp . The core observation for extending results of
Section 4 from DAGs to ADMGs is the following:

Lemma 4. Given DAG G with vertices V ∪W and its latent projection Gp onto V , any Bayesian
network in BNG that is unfaithful with respect to Gp is also unfaithful with respect to G.

Proof. If the Bayesian network m ∈ BNG is unfaithful, i.e. Dp(m) ∈ UGp , then there are
A,B,C ⊆ V such that A ̸⊥d

Gp B |C and XA⊥⊥Dp(m) XB |XC . Since πA∪B∪C ◦ πV = πA∪B∪C we
have πA∪B∪C(D

p(m)) = πA∪B∪C(D(m)), so we have XA⊥⊥D(m)XB |XC as well. As the latent

projection preserves d-separations we have A ̸⊥d
G B |C, so the Bayesian network m is unfaithful

with respect to UG, i.e. D(m) ∈ UG. ■

Now, we can extend Theorem 6 to ADMGs as follows:

Theorem 9. Given ADMG Gp with vertices V , for any DAG G with vertices V ∪W such
that Gp is the latent projection of G onto V , the subset (Dp)−1(UGp) ⊆ BNG of the Bayesian
networks that are unfaithful with respect to Gp are nowhere dense.

Proof. We have from Theorem 6 that D−1(UG) is nowhere dense in BNG. By Lemma 4 we have
(Dp)−1(UGp) ⊆ D−1(UG) and hence (Dp)−1(UGp) is nowhere dense as well. ■

For any parametrisation φ : Θ → BNG define T p := Dp ◦ φ; it is immediate that the
parameters (T p)−1(UGp) unfaithful to the latent projection Gp are a subset of the parameters
T−1(UG) unfaithful to G. Of particular interest is the following result:

Theorem 10. The set of parameters of linear Gaussian or discrete Bayesian networks with
latent variables that are unfaithful to latent projection Gp, is nowhere dense and measure-zero.

Proof. By Theorems 1, 2, 7 and 8 we have for both ΘN and ΘD that T−1(UG) is nowhere dense
and measure-zero. By Lemma 4 we have (Dp)−1(UGp) ⊆ D−1(UG) and by pre-composing D and
Dp with φ we get (T p)−1(UGp) ⊆ T−1(UG), so the parameters unfaithful with respect to Gp are
nowhere dense and measure-zero. ■

6 Discussion

One should be careful with interpreting the typicality results from this work and from Spirtes
et al. (1993) and Meek (1995), as the employed notion of ‘typicality’ depends on somewhat
arbitrary factors. The choice of σ-ideal makes an essential difference: the σ-ideals of null sets
and meager sets do not necessarily coincide. For example, the Smith-Volterra-Cantor set is a
nowhere dense subset of [0, 1] that has Lebesgue measure 1/2. In general, every subset of R is
the disjoint union of a meager set and a null set (Oxtoby, 1980, Theorem 1.6): a set that is small
in one sense may be large in the other sense. When considering the σ-ideal of measure-zero sets,

9Note that for fixed G and XW the map Dp is not necessarily surjective, contrary to the map D.
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the results depend on the choice of σ-algebra and the probability measure. For the σ-ideal of
meager sets, the results depend on the choice of the topology. The pseudometric topology that
we consider on the space BNG might be too weak for purposes of causal modelling, as it does
not distinguish between two causal models that have different interventional distributions but
the same observational distribution.

Typicality of faithful distributions in any sense might still be too weak for the purposes
of causal discovery, as faithful distributions can have extremely weak dependencies that are
undetectable from finite samples. The perhaps more practically relevant notion of strong
faithfulness of linear Gaussian Bayesian networks (Zhang and Spirtes, 2002) is not measure-zero,
as shown by Uhler et al. (2013). It is unclear whether or not it is typical in a topological sense.

From a philosophical perspective, it is absolutely unclear whether ‘in nature, unfaithful
Bayesian networks are nowhere dense’, just as there is no reason to believe that ‘nature picks
parametric Bayesian networks via a distribution that has a density’. At least we can view it as
a positive result that the opposite of our result, i.e. that unfaithful distributions are typical,
does not hold.
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