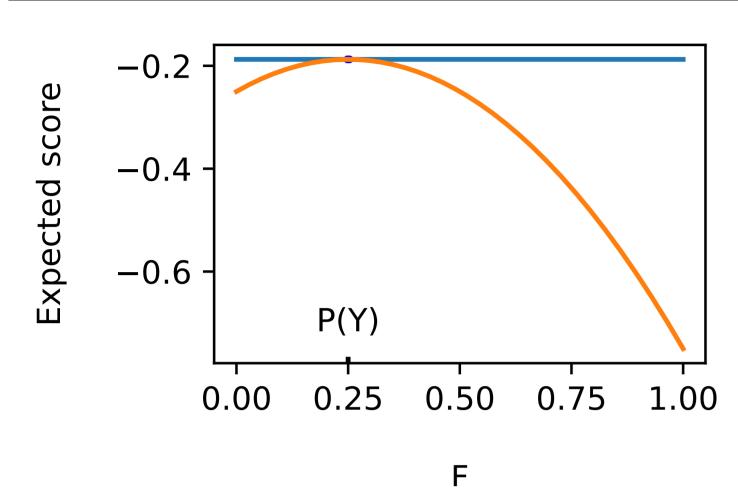


Conditional Forecasts and Proper Scoring Rules for Reliable and **Accurate Performative Predictions**

Booking.com

Philip Boeken^{1 2} Onno Zoeter² Joris M. Mooij¹

Scoring rules



Example with Brier score [1]:

$$\mathcal{Y} = \{0, 1\} \\ F \in [0, 1] \\ P(Y = 1) = 0.25 \\ S(F, y) = -(F - y)^2 \\ \mathbb{E}_P[S(F, Y)] = -(P - F)^2 - P(1 - P)$$

S is proper if $\mathbb{E}_P[S(P,Y)] \geq \mathbb{E}_P[S(F,Y)]$ for all $F \neq P$, and strictly proper if the inequality is strict.

Problem: Scoring rules are not proper in performative setting

Performative setting: $F \rightarrow A \rightarrow Y$

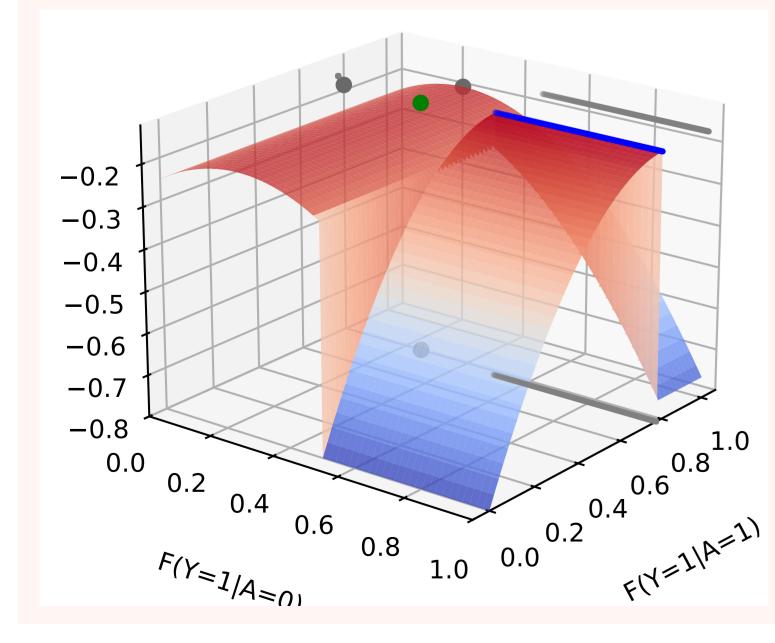
Marginal forecast *F*:



 $F \in [0, 1]$

Correct forecast does not exist!

Conditional forecast *F*:



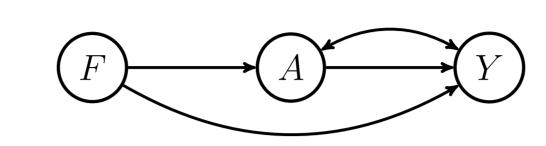
$$F = \begin{pmatrix} F(Y = 1 | A = 0) \\ F(Y = 1 | A = 1) \end{pmatrix} \in [0, 1]^{2}$$

$$A = \begin{cases} 0 & \text{if } F_{0} < 0.5 \text{ or } F_{1} > 0.775 \\ 1 & \text{otherwise} \end{cases}$$

$$P(Y = 1 \mid A) = \begin{cases} 0.25 & \text{if } A = 0 \\ 0.8 & \text{if } A = 1 \end{cases}$$

Correct forecast exists, but is not optimal!

The formal framework



Definition: Let \mathcal{M} be a set of SCMs such that $G_{[F,A,Y]}(M)$ is a subgraph of the graph above for all $M \in \mathcal{M}$.

Theorem: Let \mathcal{M} be the set of SCMs with common graph G satisfying the above definition. There exists a correct forecast for Y|A for all $M \in \mathcal{M}$ iff $Y \perp_G^d F|A$. This is assumed in all subsequent results.

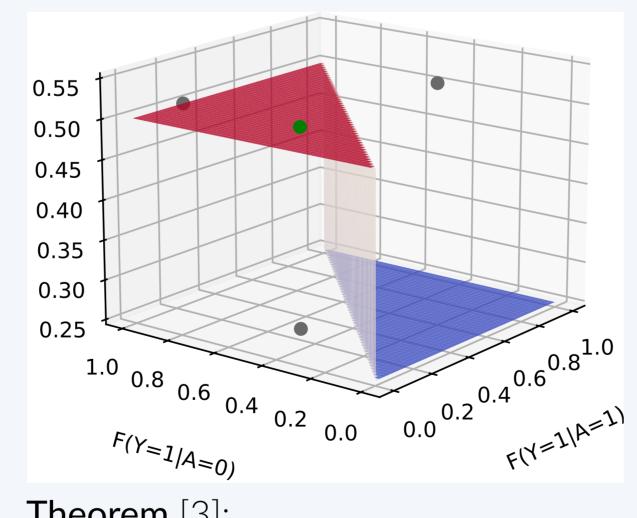
Definition: We call a conditional scoring rule S(F, a, y)

- observationally (strictly) proper relative to \mathcal{M} if for all $M \in \mathcal{M}$, $\mathbb{E}_M[S \mid do(F)]$ is (only) maximised at F with $F(Y | A = a) = P_M(Y | A = a, do(F))$ for all $a \in A$ such that $P_M(A = a \mid do(F)) > 0;$
- counterfactually (strictly) proper relative to \mathcal{M} if for all $M \in \mathcal{M}$, $\mathbb{E}_M[S \mid do(F)]$ is (only) maximised at F with $F(Y | A = a) = P_M(Y | A = a, do(F))$ for all $a \in A$ such that $P_M(A = a \mid \operatorname{do}(F)) = 0;$
- (strictly) proper relative to \mathcal{M} if for all $M \in \mathcal{M}$, $\mathbb{E}_M[S \mid do(F)]$ is (only) maximised at Fwith $F(Y | A = a) = P_M(Y | A = a, \operatorname{do}(F))$ for all $a \in A$.

Theorem: Let \mathcal{M} be the set of models such that $Y \perp_G^d F \mid A$. Let S be a classically strictly proper scoring rule, then S is not strictly proper for predicting Y|A in \mathcal{M} .

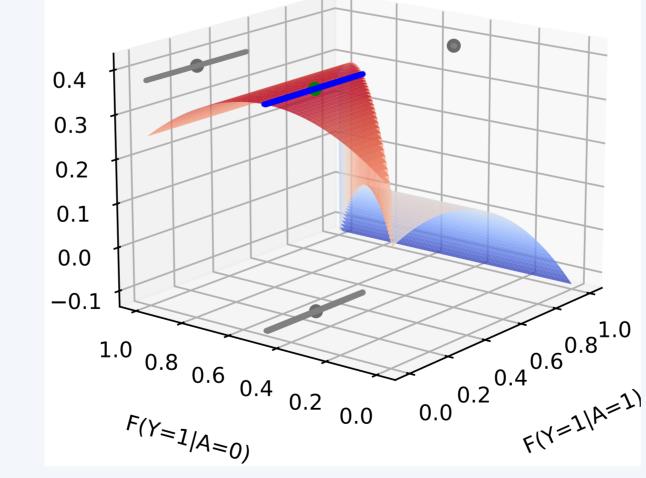
Solution 1: Decision-theoretic setting

Setting: Utility $U: \mathcal{A} \times \mathcal{Y} \to \mathbb{R}$, deterministic decision rule $F \mapsto A$ [2, 3, 4].



Theorem [3]:

Utility score $S(F, y) := U(a_F, y)$ observationally proper, counterfactually proper, incentive compatible.



Theorem:

 $S(F, y) = U(a_F, y) + \Delta \cdot S'(F_{a_F}, y)$ observationally strictly proper, counterfactually proper, incentive compatible.

Definition: Conditional scoring rule S is incentive compatible with U if

 $\arg\max_{F} \mathbb{E}_{M}[S \mid \operatorname{do}(F)] = \arg\max_{F} \mathbb{E}_{M}[U \mid \operatorname{do}(F)].$

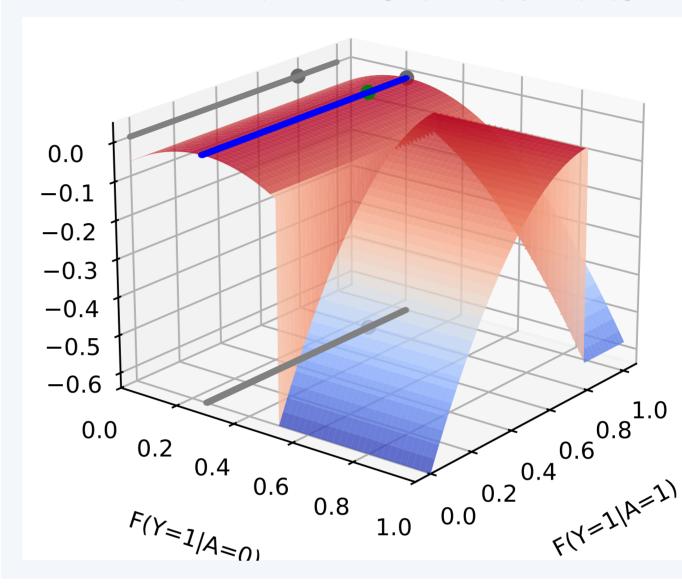
Solution 2: Performative divergence

In the classical setting, divergence is given by

$$D(F,P) := \mathbb{E}_P[S(F,Y)] - \mathbb{E}_P[S(P,Y)].$$

This generalises to the performative divergence

$$D(F,M) := \mathbb{E}_M[S(F,Y) \mid \operatorname{do}(F)] - \mathbb{E}_M[S(P_M(Y \mid A, \operatorname{do}(F)), Y) \mid \operatorname{do}(F)].$$



Theorem

Performative divergence D: observationally strictly proper, counterfactually proper.

Corollary

 $(A_1, Y_1), ..., (A_n, Y_n) \sim P_M(A, Y | do(F))$ Unbiased estimator $\hat{D}(A_1,...,Y_n)$: observationally strictly proper, counterfactually proper.

Parameter estimation

Let F_{θ} be a parametrised forecast, then in line with [5] we have

$$R(\theta_{t+1}, \theta_t) := \mathbb{E}_M[S(F_{\theta_{t+1}}, Y) \mid \operatorname{do}(F_{\theta_t})]$$
 decoupled performative score $R(\theta) := \mathbb{E}_M[S(F_{\theta}, Y) \mid \operatorname{do}(F_{\theta})] = R(\theta, \theta)$ performative score $\theta_{PS} := \mathop{\arg\min}_{\theta} R(\theta, \theta_{PS})$ performatively stable $\theta_{PO} := \mathop{\arg\min}_{\theta} R(\theta)$ performatively optimal

Performative divergence $R_D(\theta)$ and decoupled performative divergence $R_D(\theta_{t+1}, \theta_t)$ are defined similarly.

Theorem: If $P_M(A \mid do(F))$ has full support for all F and M, then for any given θ_t , the re-trained parameter $\theta_{t+1} := \arg\min_{\theta} R_D(\theta, \theta_t)$:

- yields a correct forecast,
- is performatively stable and
- performatively optimal with respect to $R_D(\theta)$.
- [1] Glenn W. Brier. Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review, 78(1):1-3, January
- [2] Yiling Chen, Ian Kash, Mike Ruberry, and Victor Shnayder. Decision Markets with Good Incentives. In Ning Chen, Edith Elkind, and Elias Koutsoupias, editors, Internet and Network Economics, pages 72-83, Berlin, Heidelberg, 2011. Springer.
- [3] Caspar Oesterheld and Vincent Conitzer. Decision Scoring Rules. In Web and Internet Economics: 16th International Conference, WINE 2020, 2020.
- [4] Abraham Othman and Tuomas Sandholm. Decision Rules and Decision Markets. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, 2010.
- [5] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative Prediction. In Proceedings of the 37th International Conference on Machine Learning, pages 7599–7609. PMLR, November 2020.