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Abstract

Performative predictions are forecasts which influence the outcomes they aim to
predict, undermining the existence of correct forecasts and standard methods of
elicitation and estimation. We show that conditioning forecasts on covariates that
separate them from the outcome renders the target distribution forecast-invariant,
guaranteeing well-posedness of the forecasting problem. However, even under this
condition, classical proper scoring rules fail to elicit correct forecasts. We prove
a general impossibility result and identify two solutions: (i) in decision-theoretic
settings, elicitation of correct and incentive-compatible forecasts is possible if
forecasts are separating; (ii) scoring with unbiased estimates of the divergence
between the forecast and the induced distribution of the target variable yields correct
forecasts. Applying these insights to parameter estimation, conditional forecasts
and proper scoring rules enable performatively stable estimation of performatively
correct parameters, resolving the issues raised by Perdomo et al. (2020). Our results
expose fundamental limits of classical forecast evaluation and offer new tools for
reliable and accurate forecasting in performative settings.

1 Introduction

In many real-world settings, predictions influence the outcomes they seek to forecast. A forecast of
high traffic may cause drivers to change routes; a grim economic outlook may shift investor behaviour
(MacKenzie et al., 2007). These performative forecasts break the classical assumption that the
target distribution is fixed — instead, the forecasts are part of the causal system. This performativity
complicates the task of correct prediction, and undermines the standard foundations of scoring rules
and statistical estimation. Moreover, correctness of a forecast doesn’t need to align with desirability
of the outcome (van Amsterdam et al., 2025).

If forecasts affect the target variable, correct forecasts need not exist: there may be no distributional
fixed point where the forecast aligns with the induced outcome, as is the case in self-defeating
prophecies. However, we show that the forecasting problem becomes well-posed when the forecaster
makes conditional predictions — in particular, predictions given observed covariates that separate the
forecast from the target: the target distribution becomes forecast-invariant, and the existence of a
correct forecast is recovered.

This paper formalizes the performative forecasting problem in a causal framework and studies con-
ditions under which correct forecasting is possible. We prove that even under forecast-invariance,
classical proper scoring rules generally fail to elicit correct forecasts. We provide two concrete
solutions: (i) in a decision-theoretic setting, proper scoring can be recovered under structural condi-
tions on the causal graph, producing incentive compatibility of the forecasters’ score and the agents
utility; (ii) we introduce a proper scoring approach based on unbiased estimates of the divergence
between the forecast and the induced distribution of the target variable. We also analyze how correct
forecasting parameters can be stably learned from data in performative environments, resolving the
problems raised by Perdomo et al. (2020).
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1.1 Related work and detailed contributions

Our analysis of the existence of correct performative forecasts extends the work of Oesterheld
et al. (2023) to conditional forecasts and formalises it in a causal modelling framework (Pearl,
2009) (Section 2). We provide necessary and sufficient conditions for the existence of correct
conditional forecasts (Theorem 1). There is a vast literature on proper scoring rules for eliciting
correct (non-performative) forecasts, see e.g. Brier (1950); McCarthy (1956); Grünwald and Dawid
(2004); Gneiting and Raftery (2007). To our knowledge, the only existing work on scoring rules
for performative forecasts is in specific decision-theoretic settings (Othman and Sandholm, 2010;
Chen et al., 2011, 2014; Oesterheld and Conitzer, 2020; Hudson, 2025). In Section 3 we introduce a
general theory of proper scoring rules for performative forecasts without restricting how the forecast
affects the target variable, contrary to what is done in the aforementioned literature. We then prove
an impossibility theorem (2) about the non-existence of proper scoring rules in general performative
settings, complementing an impossibility result of Othman and Sandholm (2010) that scoring rules are
generally not counterfactually strictly proper in decision-theoretic settings. In Section 4 we introduce
the decision-theoretic setup considered by the earlier mentioned authors. Here, we separately consider
the properness of a scoring rule and its incentive compatibility with an agent’s utility (which have
been merged into a single notion in previous works (Chen et al., 2011; Oesterheld and Conitzer,
2020)), clarifying the different notions, and providing a solution to the issue raised by van Amsterdam
et al. (2025) that correct forecasts can be harmful. We then provide the additional insight that ‘utility
scores’ (Oesterheld and Conitzer, 2020) can be made strictly proper by adding a suitably scaled
strictly proper scoring rule to the utility score; see Theorem 4. In Section 5 we introduce another
resolution of finding proper scoring rules in performative settings by scoring based on unbiased
estimates of the divergence between the forecast and the observed outcomes; see Theorem 5 and its
corollary. We give examples of unbiased estimators of certain strictly proper divergences, for binary
and continuous outcome variables. This is compared with an inverse probability weighting method
of Chen et al. (2011). Finally, in Section 6 we place this theory in the framework of Perdomo et al.
(2020) for parameter estimation in performative settings: we show that estimating parameters for
conditional forecasts with scoring rule-based estimators resolves the issues raised by Perdomo et al.
(2020): the estimated parameters don’t change over successive retraining (‘performative stability’)
and they induce a correct forecast (‘performative optimality’) (Theorem 6).

2 Existence of correct forecasts through conditioning

Let Y be any measurable sample space of variable Y , and let PY be a set of probability measures on Y .
We model the effect of forecast F ∈ PY on outcome Y with a causal model M (e.g. a causal Bayesian
network or a structural causal model (Pearl, 2009)1), inducing a causal mechanism PM (Y |do(F )).

F Y

Figure 1

Let Mp be the set of such causal models M , so whose graph is a
subgraph of Figure 1 when projected onto F and Y , and which satisfy
{PM (Y ) : M ∈Mp} ⊆ PY .2

In a non-performative setting, if the forecaster believes P ∗ to be the
true distribution, then forecast F is correct if F = P ∗. This extends
to the performative setting as follows.
Definition 1. Given a causal model M ∈ Mp, we say that the forecast F is correct for M if
F = PM (Y |do(F )).

One can interpret correct forecasts as fixed-points of the mapping F 7→ PM (Y |do(F )), see also
Grunberg and Modigliani (1954); Simon (1954) or Oesterheld et al. (2023). A self-fulfilling prophecy
is a forecast which causes itself to be correct (Merton, 1949). A correct forecast of Y need not exist.
For example, for P0, P1 ∈ PY with P0 ̸= P1, let M be such that

PM (Y |do(F )) =

{
P0 if F = P1

P1 otherwise,

then M ∈Mp has no correct forecasts. This phenomenon is well known:

1An introduction to causal models is given in Appendix A.
2For ease of exposition we don’t let forecast F depend on covariates X , nor let it be confounded with Y . In

Appendix E, we show that the results from the main paper extend to the setting where F depends on covariates
X , which are allowed to be confounded with Y .
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Example 1. Given a causal model M ∈Mp, a self-defeating prophecy is a forecast which causes
itself to be incorrect, or more formally, a forecast F for which F ̸= PM (Y |do(F )). An example
would be a forecast of rising Covid-19 incidences, causing policy makers to implement social
distancing or vaccination programs, effectively mitigating many Covid-19 incidences. When it is
impossible for the forecaster (the ‘prophet’) to be correct, this problem is sometimes referred to as
the prophet’s dilemma.

Let A be a variable with discrete sample space3 A and let PA→Y be the space of conditional
distributions F (Y |A) : A → PY , a 7→ F (Y |A = a). A conditional forecast of Y |A is a set of
forecasts

F (Y |A) = {F (Y |A = a) : a ∈ A} ∈ PA→Y .

If the conditional forecast F (Y |A) ∈ PA→Y affects the conditioning variable A and outcome Y
then we have a causal mechanism as is graphically depicted in Figure 2a. LetMpc ⊆Mp be the set
of such causal models M , so whose graph is a subgraph of Figure 2a when projected onto F,A and
Y . If A is a set of variables, letMpc ⊆Mp be the set of causal models whose graph is a subgraph
of Figure 2a after merging the variables in A into a single multi-dimensional variable (see Appendix
A for a formal definition) and projecting onto F,A and Y .

F A Y

(a) Causal graph of Mpc (b) Example of conditional forecast

Figure 2

Example 2. An example of a conditional forecast is the prediction of future average global tempera-
tures given various scenarios of air-pollution, as provided by the IPCC (2021) (Figure 2b).

The notion of correctness of conditional forecasts is more nuanced than for marginal forecasts, since
we can distinguish between correctness of the forecast for values of A that can be observed, and the
‘counterfactual’ values of A which cannot be observed.

Definition 2. Given a causal mechanism M ∈Mpc, the conditional forecast F (Y |A) is:

• observationally correct if F (Y |A = a) = PM (Y |A = a,do(F )) for all a ∈ A such that
PM (A = a |do(F )) > 0;

• counterfactually correct if F (Y |A = a) = PM (Y |A = a,do(F )) for all a ∈ A such that
PM (A = a |do(F )) = 0;

• correct if it is observationally and counterfactually correct.

Here, we pick the version of the conditional distribution PM (Y |A,do(F )) = PM (Y |do(A,F )) to
ensure that PM (Y |A = a,do(F )) is well-defined for values a ∈ A with PM (A = a |do(F )) = 0.
Note that the support of A, i.e. which values of A can be observed after forecasting F , depends on
the forecast F itself. The distinction between observational and counterfactual correctness will be
useful for defining various types of properness of scoring rules in Section 3, where one may require
a forecast to only be observationally correct, or also counterfactually correct. In Appendix C we
display a similar distinction for non-performative conditional forecasts.

A way to resolve the prophet’s dilemma is to make a conditional forecast instead of a marginal
forecast. If in the causal graph G of model M we have a d-separation Y ⊥d

G F |A, then the target
distribution satisfies PM (Y |A,do(F )) = PM (Y |A), so it does not depend on the forecast itself.
This for example holds if A perfectly mediates F and Y and is not confounded with Y .4

3We assume that A is discrete to mitigate measure-theoretic problems.
4This has also been noted by Hudson (2025) for the special case where A is an action: “One method for

avoiding performativity is to elicit predictions conditional on various actions that can be taken in response to
the prediction. As this reaction is the causal pathway by which a prediction affects outcomes, conditioning on it
removes the performative aspect.”
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Definition 3. We call the target Y |A forecast-invariant inM′ ⊆Mpc if the target distribution does
not depend on the forecast, so if PM (Y |A,do(F )) = PM (Y |A) for all M ∈M′.

Example 3. Consider the prophet’s dilemma of predicting Covid-19 incidences (Example 1). Denote
with A = 0, 1 whether policy makers implement social distancing, and let Y = 0, 1 respectively
denote ‘few’ and ‘many’ subsequent Covid-19 incidences. If for a marginal forecast F ∈ [0, 1]
of the event Y = 1 we have the stylised mechanism A = 1{F > 1/2} and Y = 1 − A, then
F ̸= P (Y |do(F )) for all F ∈ [0, 1], so the forecasting problem has no solution. However, if
we consider a conditional forecast F (Y |A = 0), F (Y |A = 1) with stylised mechanism A =
argmina F (Y |A = a) and Y = 1−A, then the target Y |A is forecast-invariant and the conditional
forecast F (Y |A = 0) = 1, F (Y |A = 1) = 0 is correct, so the forecasting problem is well-posed.5

It is immediate that for a given target Y |A, forecast-invariance implies that PM (Y |A) is the unique
correct forecast. Forecast-invariance is not necessary for the existence of an (observationally) correct
forecast. One way of motivating forecast-invariance is by relying on the causal graph of the underlying
system: the d-separation Y ⊥d

G F |A implies forecast-invariance, as mentioned earlier. If no other
assumptions are made, this d-separation even characterises forecast-invariance and whether the
forecasting problem is well-posed, as shown in the following theorem. All proofs are provided in
Appendix B.

Theorem 1. Let M′
G ⊆ Mpc be the set of models compatible6 with causal graph G, then the

following are equivalent:

i) For every M ∈M′
G there exists an observationally correct forecast of Y |A;

ii) For every M ∈M′
G there exists a correct forecast of Y |A;

iii) Y |A is forecast-invariant for all M ∈M′
G;

iv) Y ⊥d
G F |A.7

3 Eliciting correct performative forecasts with proper scoring rules

Without appropriate incentives, forecasters may have motives to report an incorrect forecast. To
address this, mechanisms must be designed to elicit correct forecasts: that is, to set the forecaster’s
incentives so that correct reporting is their optimal strategy. This mechanism is typically modelled as
a principal eliciting a probabilistic forecast from a forecaster. They agree beforehand on a scoring
rule S : PY × Y → R which determines the payout of the forecaster: after each forecast F and
observation y, the forecaster receives S(F, y) from the principal. A scoring rule is called proper if the
forecaster maximizes the expected score S(F, P ) :=

∫
S(F, y)P (dy) by reporting a correct forecast:

Definition 4. Scoring rule S is proper relative to PY if for all F, P ∗ ∈ PY we have S(F, P ∗) ≤
S(P ∗, P ∗), and strictly proper if the inequality is strict when F is incorrect.

We sometimes refer to such a scoring rule as (strictly) proper in the classical sense. Well known
examples of classical scoring rules are the Bregman score S(F, y) := φ′(f(y)) +

∫
(φ(f(x)) −

f(x)φ′(f(x)))dx for φ : R+ → R convex and differentiable and where f is a density of F . The
Bregman score is proper, and strictly proper if φ is strictly convex. By picking φ(f) = f log f , the
Bregman score reduces to the log-score S(F, y) = ln(f(y)). If Y = {0, 1}, by picking φ(f) = f2

and setting f := F (Y = 1) the Bregman score reduces to the Brier score S(F, y) = −(f − y)2

(Brier, 1950). If Y = Rd, another example is the energy score S(F, y) = EY ′∼F ∥Y ′ − y∥ −
1
2EY,Y ′∼F ∥Y − Y ′∥, where Y, Y ′ are independent random variables, and the expectations are to be
computed analytically of via a sampling scheme (Székely and Rizzo, 2013). The energy score is
strictly proper with respect to the class of distributions P (Y ) with EP ∥Y ∥ finite. For other examples
we refer to Grünwald and Dawid (2004) and Gneiting and Raftery (2007).

5As an alternative solution to mitigate performativity in Covid-19 forecasting, Bracher et al. (2021) consider
marginal, short-term forecasts with “brief time horizons, at which the predicted quantities are expected to be
largely unaffected by yet unknown changes in public health interventions.”

6Meaning that the Markov property holds: A⊥d
G B |C =⇒ A⊥⊥PM B |C for all sets of variables A,B,C.

7We can have a d-connection Y ̸⊥d
G(M) F |A but forecast invariance in M due to faithfulness violations after

intervention do(F ) (Boeken et al., 2025). However, forecast invariance for all M ∈ M′
G implies Y ⊥d

G F |A.
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As straightforward extension of scoring rules to allow for conditional forecasts F ∈ PA→Y , we refer
to a map S : PA→Y ×A×Y → R as a conditional scoring rule; after forecasting F and observing a
and y, the forecaster receives S(F, a, y) from the principal.8 Any ‘classical’ scoring rule S′ induces a
conditional scoring rule S via S(F, a, y) := S′(F (Y |A = a), y); if we consider a classical scoring
rule for conditional forecasts, we always implicitly consider this induced conditional scoring rule.
We define properness of conditional scoring rules for non-performative forecasts in Appendix C; this
is generalised by Definition 5 in Section 3.1 below.

Most existing work on scoring rules assumes that the forecast does not affect the predicted variable,
with an explicit mention in McCarthy (1956), assumption (iv): “We assume that neither the forecaster
nor the [principal] can influence the predicted event [...]”. Our main interest lies in dropping this
assumption, as is often required in practice (Perdomo et al., 2020; Boeken et al., 2024).

3.1 Defining properness of scoring rules for performative forecasts

To extend the theory of proper scoring rules to the performative setting we adhere to the same
rationale as in the classical setting: if the forecaster knows that M is the true model, then the expected
score should be maximised at a correct forecast, where now the expected score of a forecast F will
be considered with respect to PM (Y |do(F )). Given a scoring rule S : PY × Y → R, a marginal
forecast F ∈ PY and causal model M ∈Mp the expected score is

Sp(F,M) :=

∫
S(F, y)PM (dy |do(F )).

For a conditional scoring rule S : PA→Y ×A× Y → R, conditional forecast F (Y |A) ∈ PA→Y
and model M ∈Mpc the expected score is

Spc(F,M) :=

∫
S(F, a, y)PM (da,dy |do(F )).

Recall Definitions 1 and 2 of the various types of correctness of performative (conditional) forecasts.
Definition 5. For marginal forecasts, a scoring rule S is proper relative to M′ ⊆ Mp if Sp is
maximised at a correct forecast, and strictly proper if all maximisers are correct. We call a conditional
scoring rule

• observationally (strictly) proper relative to M′ ⊆ Mpc if Spc is (only) maximised at
observationally correct forecasts for all M ∈M′;

• counterfactually (strictly) proper relative to M′ ⊆ Mpc if Spc is (only) maximised at
counterfactually correct forecasts for all M ∈M′;

• (strictly) proper relative toM′ ⊆Mpc if it is observationally and counterfactually (strictly)
proper, that is, if Spc is (only) maximised at correct forecasts for all M ∈M′.9

If we consider a class of modelsM′ where F does not affect Y , then Definition 5 is equivalent to
Definition 4 and its conditional version (Appendix C). For a scoring rule to be (observationally)
proper with respect toM′, it is required that for every M ∈ M′ there exists an (observationally)
correct forecast P ∗, signifying the subtleties of Section 2: if one only makes assumptions about
the causal graph, Theorem 1 implies that the target variable must be forecast-invariant for a
scoring rule to be proper. Note that if a correct forecast exists, any constant scoring rule is proper;
throughout we only consider non-constant scoring rules.

3.2 Impossibility of eliciting correct performative forecasts with classical scoring rules

Few examples of conditional scoring rules exist in the literature; the most straightforward examples are
conditional scoring rules S induced by classical scoring rules S′ through S(F, a, y) = S′(F (Y |A =

8To our knowledge, the only related literature on scoring rules for conditional forecasts F ∈ PA→Y are
Kadane et al. (1980); Schervish et al. (2009) in the non-performative setting, who consider conditional scoring
rules of the form S(F (Y |A = a), y), and Othman and Sandholm (2010); Chen et al. (2014); Oesterheld and
Conitzer (2020) who consider scoring rules for conditional forecasts in the performative setting of the form
S(F, y), S(F, PM (A), a, y) and S(F (Y |A = a), y) respectively.

9In a decision-theoretic context, Othman and Sandholm (2010) and Chen and Kash (2011) refer to scoring
rules which are both observationally strictly proper and counterfactually proper as ‘quasi-strictly proper’ scoring
rules.
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a), y). In this section we investigate whether one can expect these induced conditional scoring rules
to be proper in the performative sense, even if they are strictly proper in the classical sense.

As remarked in the previous section, forecast-invariance is necessary for a scoring rule to be proper;
however, it is not sufficient. Typically, the easier the forecasting problem, the higher the expected
score of a correct forecast. If traffic jams are hard to predict on a highway called ‘Route A’, then it can
be beneficial for the forecaster to incorrectly predict a terrible traffic jam on Route A so that all cars
will take an alternative, easier-to-predict Route B; the forecaster will benefit from a correct forecast
on Route B, and will never be punished for the incorrect forecast on Route A. In this mechanism the
scoring rule is observationally strictly proper but not counterfactually proper. The following
example is adapted from Othman and Sandholm (2010):

Example 4. Let A = Y = {0, 1} and M be such that Y |A is forecast-invariant, with PM (Y =
1 |A = 0) = 0.5, PM (Y = 1 |A = 1) = 0.25 and the ‘decision rule’ A = argmaxa F (Y =
1 |A = a). If the forecaster reports the correct forecast A = 0 is chosen and the expected Brier score
is−0.5 ·(0.5)2−0.5 ·(0.5)2 = −0.25, and if the forecaster reports F (Y = 1 |A = 0) = 0.2, F (Y =
1 |A = 1) = 0.25 then A = 1 is chosen the expected score is−0.25·(0.75)2−0.75·(0.25)2 ≈ −0.19.
The scoring rule is observationally strictly proper since for the observed value A = 1 the score is
maximised at a correct forecast, but it is not counterfactually proper since it pays off to misreport for
the value A = 0, which is not observed.

Inspired by the self-defeating prophecy, we can construct even more pathological examples where
the scoring rule is neither observationally nor counterfactually proper. Consider a mechanism
PM (A |do(F )) which can pick between two values of A: one for which Y is easier to predict,
giving a higher expected score, and one for which Y is harder to predict, giving a lower expected
score. If for any (close to) correct forecast the mechanism PM (A |do(F )) picks the harder-to-predict
action, it is beneficial for the forecaster to misreport since this induces an easier-to-predict action,
yielding a higher expected score. Hence, in this mechanism the scoring rule is observationally
and counterfactually improper. Notably, the mechanism PM (A |do(F )) can be, but need not be,
deterministic. In Appendix F.1 we provide examples and 3D-plots of this phenomenon.

The following theorem shows formally that in general performative settings, non-constant proper
scoring rules don’t exist. The proof relies on the phenomenon of the self-defeating prophecy, as just
explained.

Theorem 2. Let M′ ⊆ Mpc be the set of models such that Y |A is forecast-invariant, where
PM (A |do(F )) has full support for all F ∈ PY and all M ∈ M′, or where PM (A |do(F )) is
deterministic for all M ∈ M′. If S is a scoring rule with respect to PY such that there are
P0, P1 ∈ PY and forecast F̃ ∈ PY with F̃ ̸= P1 and S(P0, P0) < S(F̃ , P1) < S(P1, P1), then S is
not observationally proper for predicting Y |A inM′.

Notably, this scoring rule is also not observationally proper for any larger class of models, for
example when one does not require Y |A to be forecast-invariant or if no assumptions are made on the
mechanism PM (A |do(F )). We will cover two solutions which go beyond classical scoring rules: in
Section 4 we consider a decision-theoretic class of models with a particular deterministic mechanism
PM (A |do(F )) (the same for all M ) for which proper conditional scoring rules exist, and in Section
5 we relax the setting by allowing the principal to score forecasts using estimated properties of the
distribution PM (A, Y |do(F )). Another notable solution is given by Hudson (2025), who relaxes
the setting by considering multiple forecasters who compete in a zero-sum game.

4 Properness and incentive compatibility in a decision-theoretic setting

Often, the forecast is provided to an agent who acts based on the forecasted information.10 The quality
and reliability of the forecast thus have a direct impact on the agent’s behaviour and, consequently,
on outcomes which may be of interest to the principal. More specifically, given a conditional
forecast F , let the agent take an action which maximizes the expectation of a utility U(a, y), so
we have A = aF := argmaxa∈A

∫
U(a, y)F (dy | a).11 This requires the forecast F (Y |A) to be

10Note that this agent might be the principal herself.
11The action aF is often referred to as the Bayes act; see also Dawid (2007); Brehmer and Gneiting (2020);

Dawid (2021).
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a forecast of the causal effect PM (Y |do(A)), which holds in our setting since we assume that
there is no confounding between A and Y : letMdt ⊆ Mpc be the set of causal models M with
PM (A |do(F )) = δaF

.
Definition 6. Given a utility U and a set of causal models M′ ⊆ Mpc, we call a conditional
scoring rule S incentive compatible12 with U if for all M ∈ M′ we have argmaxF Spc(F,M) =
argmaxF

∫
U(a, y)PM (da,dy |do(F )).

The goal of the agent is to maximise its expected utility, and the goal of the forecaster is to maximise
its expected score. As also noted by Othman and Sandholm (2010) and by van Amsterdam et al.
(2025) for marginal forecasts, these two incentives don’t necessarily align:
Example 5. Consider Example 4, interpreted as a forecast being given to an agent with utility
U(a, y) = y; then indeed A = aF = argmaxa F (Y = 1 |A = a). The optimal action for the
agent is a∗ = 0, but to maximise the score the forecaster reports F (Y = 1 |A = 0) = 0.2 and
F (Y = 1 |A = 1) = 0.25, forcing the agent to take the suboptimal action aF = 1. Despite the
forecast being observationally correct, it is not incentive-compatible with U .

It is not hard to see that every strictly proper conditional scoring rule is incentive compatible with
any utility. Generalising the result of Othman and Sandholm (2010) (Theorem 4) to our setting,
we moreover have that inMdt, proper conditional scoring rules must have the form S(F, a, y) =
S(F (Y |A = aF ), aF , y), so they may only depend on forecasts for unobserved actions through aF ,
and they can never be counterfactually strictly proper.

Nevertheless, proper, incentive compatible conditional scoring rules exist; we will later show that they
can even be made observationally strictly proper and incentive compatible. In the non-performative
setting where marginal forecasts F (Y ) affects A but where A does not affect Y , it is well known
that the utility score S(F, y) := U(aF , y) is proper (Dawid, 2007; Brehmer and Gneiting, 2020). In
the performative setting with conditional forecast, we can straightforwardly consider the conditional
scoring rule S(F, a, y) = U(aF , y); since the expected score then equals the expected utility, it
is automatically incentive-compatible – not only inMdt, but even for all M ∈ Mpc, so for any
(possibly stochastic) policy PM (A |do(F )). As shown by Oesterheld and Conitzer (2020), this utility
score is proper inMdt:
Theorem 3. The utility score is incentive-compatible with U , and proper if Y |A is forecast-invariant
inM′ ⊆Mdt. If for a given causal graph G one considers the class of modelsM′

G ⊆Mdt which
are consistent with G, then forecast invariance of Y |A is necessary for the utility score to be proper.

A main restriction of the utility score is that it is not observationally strictly proper: there can be
multiple observationally incorrect forecasts which maximise the score. However, in the following we
show that there does exist a conditional scoring rule which is incentive-compatible and observationally
strictly proper. If the principal knows that the expected utility between any two actions differs with at
least ∆ > 0, then the principal can elicit incentive-compatible and observationally correct forecasts
by first scoring using the utility score to ensure that the optimal action a∗ is taken, and subsequently
add a scaled strictly proper scoring rule S′ for F (Y |A = a∗) to ensure that the maximum is uniquely
attained at the observationally correct forecast PM (Y |A = a∗), where the magnitude of S′ is
bounded by ∆ to ensure that it does not incentivise a forecast which induces an action different
than a∗. This utility gap ∆ can for example be assumed if A is a binary indicator of a ‘high-risk,
high-reward’ action, like a risky operation or a bold marketing campaign.
Theorem 4. Let Y |A be forecast-invariant in M′ ⊆ Mdt, let U ∈ [0, 1], let S′ ∈
[0, 1] be a proper scoring rule in the classical sense and let there be a ∆ > 0 such that
min {|EM (U(a, Y ) | a)− EM (U(a′, Y ) | a′)| : a ̸= a′} > ∆ for all M ∈ M′, then S(F, a, y) :=
U(aF , y) + ∆ · S′(F (Y |A = aF ), y) is proper and incentive-compatible with U . If S′ is strictly
proper in the classical sense, then S is observationally strictly proper.

5 Eliciting correct forecasts with estimates of the performative divergence

Given a scoring rule S : PY × Y → R, forecast F ∈ PY and distribution P ∈ PY , the generalised
entropy is defined as H(P ) := −S(P, P ) and the generalised divergence as D(F, P ) := −H(P )−

12We use the term ‘incentive compatibility’ different than Chen et al. (2011): they let it refer to strict properness
of a conditional scoring rule, which implies our notion of incentive compatibility.
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S(F, P ) =
∫
(S(P, y)− S(F, y))P (dy), following Grünwald and Dawid (2004). If S is strictly

proper, the entropy is the maximal attainable expected score – see also Example 4, where the forecaster
manipulates towards easier problems, i.e. problems with lower entropy. Recall the examples of
classical scoring rules from the beginning of Section 3: the Bregman score induces the Bregman
divergence, the log-score induces the Shannon entropy and Kullback-Leibler divergence, and the
(negative) expected Brier score equals the mean square error −S(F, P ) = EP [(f − y)2] = (p −
f)2 + p(1 − p), which indeed decomposes into the variance H(P ) = p(1 − p) and the bias term
D(F, P ) = (p−f)2. The entropy of the energy score is given by H(P ) = 1

2EY,Y ′∼P ∥Y −Y ′∥, and
the divergence by D(F, P ) = EY∼F,Y ′∼P ∥Y −Y ′∥− 1

2EY,Y ′∼P ∥Y −Y ′∥− 1
2EY,Y ′∼F ∥Y −Y ′∥.

Definitions of generalised entropy and generalised divergence for non-performative conditional
forecasts are given in Appendix C.

In the classical setting, maximizing a proper score is equivalent to minimising the divergence: the
correct forecast attains zero divergence (Grünwald and Dawid, 2004; Gneiting and Raftery, 2007).
Inspired by this, we aim at proper scoring of forecasts with the performative divergence. To this end,
we show that the performative divergence is positive and optimised at observationally correct forecasts
(Theorem 5). We subsequently suggest how the principal can calculate the divergence (Corollary 1
and Lemma 1), which is a non-trivial problem since the causal mechanism M is unknown to her.

Indeed, for marginal performative forecasts, we see that the deviation of the forecast F from
the induced distribution PM (Y |do(F )), given by the performative divergence Dp(F,M) :=
D(F, PM (Y |do(F ))) is also positive. We have Dp(F,M) = 0 if F is correct for M , and this
holds with equivalence if the divergence is induced by a strictly proper scoring rule. We suitably
extend this to conditional performative forecasts as follows:
Definition 7. Given a scoring rule S, conditional forecast F (Y |A) ∈ PA→Y and causal model
M ∈Mpc, the performative divergence is defined as

Dpc(F,M) :=

∫
(S(PM (Y |A = a,do(F )), y)− S(F (Y |A = a), y))PM (da,dy |do(F )).

With performative entropy Hpc(M |do(F )) :=
∫
H(PM (Y |A = a,do(F )))P (da |do(F )), the

performative divergence can be written as Dpc(F,M) = −Hpc(M |do(F ))− Spc(F (Y |A),M).

Although the divergence cannot be written as the expected value of a scoring rule, we use the same
nomenclature of Definition 5 and refer to the divergence as (observationally/counterfactually) (strictly)
proper, keeping in mind that the divergence is minimised at correct forecasts, instead of maximised.
Theorem 5. Let M′ ⊆ Mpc be such that for every M ∈ Mpc there exists an observationally
correct forecast for Y |A. If S is proper in the classical sense, then the divergence Dpc is positive
and proper. If S is strictly proper in the classical sense, then Dpc is observationally strictly proper.

Notably, Theorem 5 does not require the target to be forecast-invariant. Also note that full support of
PM (A |do(F )) implies strict properness of the divergence.

When scoring the forecast directly with a conditional scoring rule, this is straightforward for the
principal to carry out: upon receiving a conditional forecast F (Y |A) and observing a and y,
the resulting score is S(F, a, y). The forecaster picks the forecast which optimises the expected
value Spc(F,M). When scoring with the performative divergence however, upon receiving the
forecast F (Y |A) and observing a and y, she should score with S(PM (Y |A = a,do(F )), y) −
S(F (Y |A = a), y). This either requires access to the distribution PM (Y |A = a,do(F )) (in which
case forecasting is redundant), or more practically, it requires the principal to estimate the entropy,
i.e. the expectation of the first term. More generally, the principal can estimate the divergence. If
the employed estimator D̂pc is unbiased, the forecaster optimizes EM [D̂pc |do(F )] = Dpc(F,M),
which renders the scoring method observationally strictly proper by Theorem 5.
Corollary 1. LetM′ ⊆ Mpc be such that for every M ∈ Mpc there exists an observationally
correct forecast for Y |A, let S be proper in the classical sense, and let (A1, Y1), ..., (An, Yn) ∼
PM (A, Y |do(F )). Any unbiased estimator D̂pc(A1, ..., Yn) of the performative divergence
Dpc(F,M) is proper, for any sample size n ∈ N such that D̂pc is well-defined. If S is strictly
proper in the classical sense, then D̂pc is observationally strictly proper.

Notably, the variance of the estimator and the sample size are irrelevant for the properness of the
method. To demonstrate the applicability of this result, we show that for finite A and binary or
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continuous Y , there are strictly proper classical scoring rules with a corresponding unbiased estimator
for the performative divergence.
Lemma 1. Consider the setting of Corollary 1. For binary Y and S the Brier score, the estimator

D̂Brier
pc :=

1

n

n∑
i=1

(p̂ai − fai)
2 − p̂ai

(1− p̂ai
)

nai − 1

is unbiased, where we write na :=
∑n

i=1 1{ai = a}, p̂a := 1
na

∑n
i=1 yi1{ai = a} and fa :=

F (Y = 1 |A = a). For Y ∈ Rn with integrable norm and S the energy score, the estimator

D̂energy
pc :=

1

n

n∑
i=1

EY∼Fai
[∥Y − yi∥]−

1

2

∑
j ̸=i

aj=ai

∥yi − yj∥

nai
− 1

− 1

2
EY,Y ′∼Fai

[∥Y − Y ′∥]

is unbiased.

Note that both estimators require na ≥ 2 for all a ∈ A. The Brier score is strictly proper, and
the energy score is strictly proper with respect to the class of distributions with finite first moment
(Gneiting and Raftery, 2007). The estimator for the energy score requires an evaluation of the
expectations, either analytically or via an (unbiased) sampling scheme.

Instead of making a scoring rule proper by subtracting the estimated entropy, one can multiply
a classical scoring rule S with estimates of the inverse probability weights (IPWs) 1/PM (A =
a |do(F )) and properly score with SIPW(F, a, y) := S(F (Y |A = a), y)/PM (A = a |do(F )), as
proposed by Chen et al. (2011). In Appendix D we prove for completeness that if PM (A |do(F ))
has full support and S is a (strictly) proper scoring rule in the classical sense, then IPW score SIPW

is (strictly) proper in the performative sense. For properness of the IPW score the principal either
requires knowledge of PM (A |do(F )), or must be able to estimate it with an unbiased estimator.
It is unclear whether such an unbiased estimators exist. In Appendix G we provide an empirical
analysis of unbiased estimates of the divergence on synthetic data, and we compare with biased
plugin estimators of the divergence and IPW score.

6 Parameter estimation based on scoring rules

In the previous sections we have taken the viewpoint of the principal by addressing how to elicit
correct forecasts via proper scoring rules, assuming that the forecaster picks a forecast which
maximises the expected score. In this section we switch to the viewpoint of the forecaster who aims at
estimating the parameter of the forecasting model from data. We show that if Y |A is forecast-invariant
and the parameter of the conditional forecast is estimated using the divergence related to a strictly
proper scoring rule, then this yields a correct forecast which is immediately performatively stable,
performatively optimal, and subsequently maximises the expected score when the forecaster is scored
by a principal using any proper scoring method.

Formally, consider parametrised forecasts {Fθ : θ ∈ Θ} for some parameter space Θ ⊆ Rd. If
Fθ does not affect Y and one has data (y1, ..., yn) with empirical distribution P̂n, one can employ
scoring rules for parameter estimation by minimising the divergence θ̂ = argminθ D(Fθ, P̂ ), which
is equivalent to minimising the empirical negative score θ̂ = argminθ

∑n
i=1−S(Fθ, yi) which

satisfies the estimating equation
∑n

i=1∇θS(Fθ, yi) = 0, and therefore defines an M -estimator
(Dawid and Musio, 2014), which (under regularity conditions) is a consistent estimator for a correct
parameter θ∗, i.e. a parameter such that the forecast Pθ∗ is observationally correct. For the log-
score this amounts to maximum likelihood estimation. In machine learning, a popular scheme is
score matching with the Hyvärinen score, amounting to the minimisation of the related divergence
D(F,M) =

∫
Y |∇yp(y) − ∇yfθ(y)|2dy (Hyvärinen, 2005). We investigate whether estimation

based on scoring rules can also be employed when the forecast is performative, by formulating this
question in the framework of Perdomo et al. (2020).
Definition 8. Given a loss function ℓ(θ, a, y), the corresponding performative risk is defined as
Rp(θ) :=

∫
ℓ(θ, a, y)PM (da,dy |do(Fθ)), and a minimiser θPO of the performative risk is re-

ferred to as performatively optimal. The decoupled performative risk is defined as Rd(θt+1, θt) :=∫
ℓ(θt+1, a, y)PM (da,dy |do(Fθt)), and parameter θPS is performatively stable if θPS :=

argminθ R
d(θ, θPS).
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The preceding sections concern the elicitation of correct forecasts through scoring rules, calculated
as the score of a forecast with respect to the distribution that forecast induces. These metrics
(expected negative score Rp

S(θ) := −Spc(Fθ,M), divergence Rp
D(θ) := Dpc(Fθ,M), and analogue

definitions for utility score and IPW score) can be interpreted as a generalised type of performative
risk, and if these methods are observationally strictly proper, then observational correctness of the
forecast is equivalent to performative optimality of the parameter.

For parameter estimation the decoupled performative risk is used, which does not correspond to the
‘performative’ metrics as just mentioned. Instead, they correspond to more classical metrics, with an
additional dependency on the previous parameter:

Rd
S(θt+1, θt) = −

∫
S(Fθt+1(Y |A = a), PM (Y |A = a,do(Fθt)))PM (da |do(Fθt))

Rd
D(θt+1, θt) =

∫
D(Fθt+1

(Y |A = a), PM (Y |A = a,do(Fθt)))PM (da |do(Fθt)),

for which we indeed have that Rd
S(θ, θ) = Rp

S(θ) and Rd
D(θ, θ) = Rp

D(θ). If S and D are strictly
proper in the classical sense then they are observationally strictly proper for conditional forecasts (see
Appendix C) so upon setting θt+1 = argminθ R

d
S(θ, θt) or equivalently θt+1 = argminθ R

d
D(θ, θt)

we obtain the recurrence relation Fθt+1
= PM (Y |A,do(Fθt)) (which holds PM (A |do(Fθt))-

almost everywhere), assuming there is no model misspecification. Now, if θt is observationally correct
then we obtain Fθt = PM (Y |A,do(Fθt)) and hence Fθt+1

= Fθt , i.e. performative stability. If Y |A
is forecast-invariant then we obtain Fθt+1

= PM (Y |A) (PM (A |do(Fθt))-almost everywhere) in the
aforementioned recurrence relation, so if the supports of PM (A |do(Fθt)) and PM (A |do(Fθt+1))
coincide we see that Fθt+1 is observationally correct. This parameter is in turn performatively
optimal for any performative risk for which performative optimality corresponds to correctness of the
parameter. We summarise these insights in the following theorem:
Theorem 6. Suppose that for every model M in the classM′ ⊆Mpc and every forecast F ∈ PA→Y
the distribution PM (A |do(F )) has full support and that Y |A is forecast-invariant, and let D be
the divergence induced by a strictly proper scoring rule. For any parameter θt for conditional
forecast Fθt(Y |A), we have that θt+1 := argminθ R

d
D(θ, θt) yields a correct forecast which is

performatively stable and performatively optimal with respect to RD(θ).

Assume that the forecaster will be scored by the principal using a performatively proper scoring
method, e.g. with the utility score from Theorem 4, or with an unbiased estimate of the performative
divergence as in Corollary 1. If the forecaster has merely estimated her parameter using the procedure
in Theorem 6 and does not have an estimate of PM (A |do(F )), she is unable to evaluate (and hence
optimise) her expected score directly. However, since the expected score is optimised by the correct
forecast, the procedure from Theorem 6 optimises her expected score.
Corollary 2. Consider the setting of Theorem 6. If the forecaster is scored with a strictly proper
scoring rule, then the parameter θt+1 := argminθ R

d
D(θ, θt) is an optimiser of the expected score.

7 Discussion

We develop a theory of performative forecasting that describes when and how making predictions can
influence the very outcomes being predicted, showing that classical scoring rules need not be proper
nor compatible with outcome-optimisation under performativity, and we propose new utility-based
and divergence-based scoring methods that incentivise correct forecasting. We further prove that
these methods yield stable and optimal parameter estimates under repeated retraining. We hope
that our impossibility result and our prominent emphasis on incentive compatibility instill caution
when scoring rules are applied in practice, and that the potential solutions inspire further research on
reliable and accurate performative predictions.

The provided proper scoring methods depend on a couple of restrictive assumptions which should be
scrutinised in practise, and which open up new paths for further research. First, the assumption of
forecast-invariance may be hard to motivate in practise. We also assume a discrete sample space A;
extension to the continuous case would be of interest. We conjecture that our theory for probabilistic
forecasts can be extended to point forecasts (or actually, various functionals of PM (Y |A,do(F )))
through consistent scoring functions (Lambert et al., 2008; Gneiting, 2011; Holzmann and Eulert,
2014).
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A Introduction to causal models

The causal models that we consider can be interpreted as causal Bayesian networks or structural
causal models. For completeness, we briefly present both modelling frameworks. This material can
largely be found in Pearl (2009); Bongers et al. (2021); Forré and Mooij (2025); Boeken et al. (2025).

A.1 Graphs

A directed acyclic graph (DAG) is a tuple G = (V,E) with V a finite set of vertices and E ⊂ V ×V a
set of directed edges such that there are no directed cycles. An acyclic directed mixed graph (ADMG)
is a tuple G = (V,E,L) with vertices V , directed edges E, and bidirected edges L ⊂ V × V such
that there are no directed cycles.

Given DAG G with path π = a ... b, a collider is a vertex v with ...→ v ← ... in π. For sets
of vertices A,B,C ⊆ V we say that A and B are d-separated given C, written A ⊥d

G B |C, if for
every path π = a ... b between every a ∈ A and b ∈ B, there is a collider on π that is not an
ancestor of C, or if there is a non-collider on π in C. The sets A and B are d-connected given C if
they are not d-separated, written A ̸⊥d

G B |C.

Given a DAG G over V ∪W , the latent projection of G onto V is the ADMG GV with vertices
V , directed edges a → b if there is a path a → w1 → ... → wn → b in G with wi ∈ W for all
i = 1, ..., n (if any), and bi-directed edges a ↔ b if there is a bifurcation a ← w1 ← ... ← wk →
...→ wn → b in G with wi ∈W for all i = 1, ..., n (Verma, 1993).

F A1

L1A2

A3

Y

L2

(a) Graph G

F A1

A2

A3

Y

(b) Latent projection of G onto F,A1, A2, A3, Y .

Figure 3: Example of DAG G and a latent projection.

For an ADMG G over V , a set of variables A1, ..., An ⊆ V can be merged into a single variable
A /∈ V by removing from G all vertices Ai, adding a vertex A, and for every v ∈ V \ {A1, ..., An}
add the edge v → A / v ↔ V / A → v if there is an i ∈ {1, ..., n} such that v → Ai / v ↔ Ai /
Ai → v in G.

F A Y

Figure 4: Merging of variables A1, A2, A3 of the graph in Figure 3b to a single vertex A.

In Figure 3a, we see that F ⊥d
G Y |A1, A2, A3, so defining A := (A1, A2, A3) we indeed have

forecast invariance of Y |A (see Theorem 1). Note that testing for forecast-invariance in the original
graph (where the set of variables A is not merged) is stronger than testing it after the merging of A:
we have F ⊥d Y |A1, A2, A3 in Figure 3a and equivalently in Figure 3b, but we have F ̸⊥d Y |A in
Figure 4.

A.2 Bayesian network

Given a DAG G, writing pa(v) for the set of parents of v in G, a Bayesian network over G is
a tuple of Markov kernels (P (Xv |Xpa(v)))v∈V . We refer to the joint distribution P (XV ) =⊗

v∈V P (Xv |Xpa(v)) as the observational distribution.
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Given a Bayesian network and a subset of variables T ⊆ V and values xT ∈ XT , the intervened
Bayesian network is given by the set of Markov kernels

P̃ (Xv |Xpa(v)) =

{
δxv

(Xv) if v ∈ T

P (Xv |Xpa(v)) if v /∈ T .

This gives rise to the interventional distribution P (XV |do(XT = xt)) :=
⊗

v∈V P̃ (Xv |Xpa(v)),
and the graph of the intervened Bayesian network is the graph G without any edges into any of
the variables v ∈ T . In the main paper we slightly deviate from this notation by writing e.g.
PM (Y |do(F )) to mean PM (XY |do(XF = xF )), so only for F we make the exception to always
indicate a value xF instead of the random variable XF .

A.3 Structural Causal Models

Alternatively, the causal models can be interpreted as a structural causal model (SCM), which
formally consist of a tuple (V,W,X , f, P ) where

• V is the index set of endogenous variables
• W is the index set of exogenous variables
• X =

∏
v∈V Xv ×

∏
w∈W Xw is a product of Polish spaces (e.g. {0, 1},Z,R)

• fV : XV ×XW → XV is a set of structural equations
• P (XW ) =

⊗
w∈W P (Xw) is a product of Borel probability measures.

We call j ∈ V ∪W a parent of i ∈ V if the structural equation fi truly depends on xj , i.e. if there is
no measurable map f̃i : XV \{j} × XW\{j} → Xi such that for P (XW )-almost all xW and all xV

we have
xi = fi(xV , xW ) ⇐⇒ xi = f̃i(xV \{j}, xW\{j}).

The augmented graph of an SCM M is a directed graph Ga(M) with vertices V ∪W and for all
j ∈ V ∪W, i ∈ V an edge j → i if j is a parent of i. The graph G(M) of an SCM M is the latent
projection of Ga(M) onto V . We call an SCM M acyclic if Ga(M) (or equivalently, G(M)) is
acyclic.

Given an SCM M = (V,W,X , f, P ) and a subset of variables T ⊆ V and value xT ∈ XT , the
intervened SCM Mdo(XT=xT ) = (V,W,X , f̃ , P ) has for every v ∈ V the structural equation

f̃v =

{
xv if v ∈ T

fv(xV , xW ) if v /∈ T .

Given a subset T ⊆ V and writing O := V \ T , a solution function with respect to O is a measurable
map gO : XT × XW → XO such that P (XW )-almost all xW ∈ XW and for all xT ∈ XT we
have gO(xT , xW ) = fO(xT , gO(xT , xW ), xW ). Given a random variable XW with distribution
P (XW ), the random variable XV := gV (XW ) defines the observational distribution PM (XV ), and
the random variable XO := gO(xT , XW ) defines the interventional distribution PM (XO |do(XT =
xT )). If M is acyclic, gO can always be obtained by recursive substitution of the structural equations
of Mdo(XT=xT ).

A.4 Markov property and faithfulness

For any Bayesian network or acyclic SCM with DAG G and observational distribution P the global
Markov property holds:

A ⊥d
G B |C =⇒ XA⊥⊥

P
XB |XC

for all A,B,C ⊆ V . A Bayesian network is called faithful if for all A,B,C ⊆ V we have

A
d

̸⊥
G
B |C =⇒ XA⊥̸⊥

P
XB |XC ,

see also Boeken et al. (2025).

We refer to a distribution P (XV ) as compatible with ADMG G with vertices V if the Markov
property holds.
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B Proofs

B.1 Section 2

Theorem 1. Let M′
G ⊆ Mpc be the set of models compatible13 with causal graph G, then the

following are equivalent:

i) For every M ∈M′
G there exists an observationally correct forecast of Y |A;

ii) For every M ∈M′
G there exists a correct forecast of Y |A;

iii) Y |A is forecast-invariant for all M ∈M′
G;

iv) Y ⊥d
G F |A.14

Proof. iv) =⇒ iii): If F ⊥d
G Y |A then for every M ∈ M′

G we have PM (Y |A,do(F )) =
PM (Y |A) by the third rule of the do-calculus (Pearl, 2009).
iii) =⇒ ii): If PM (Y |A,do(F )) = PM (Y |A) for every M ∈ M′

G, then PM (Y |A) is a correct
forecast.
ii) =⇒ i): This follows immediately from Definition 2.
i) =⇒ iv): We prove the contrapositive. If F ̸⊥d

G Y |A, then there must be a path F → V1 → ...→
Vn → Y in G with Vi /∈ A for all i = 1, ..., n. Let P0, P1 ∈ PY with P0 ̸= P1. Set

PM (V1|do(F )) =

{
δ0 if F (Y |A = a) = P1 for some a ∈ A
δ1 otherwise

PM (Vi+1 |do(Vi)) =

{
δ0 if Vi = 0

δ1 otherwise
for all i = 1, ..., n− 1

PM (Y |Vn) =

{
δ0 if Vn = 0

δ1 otherwise,

and pick for every other variable Z (including the variables in A) some independent distribution
PM (Z). Then M is Markov with respect to G so M ∈ M′

G, and PM (Y |A,do(F )) = P1 iff
P1 /∈ F (Y |A), so there is no observationally correct forecast for M . ■

B.2 Section 3

Theorem 2. Let M′ ⊆ Mpc be the set of models such that Y |A is forecast-invariant, where
PM (A |do(F )) has full support for all F ∈ PY and all M ∈ M′, or where PM (A |do(F )) is
deterministic for all M ∈ M′. If S is a scoring rule with respect to PY such that there are
P0, P1 ∈ PY and forecast F̃ ∈ PY with F̃ ̸= P1 and S(P0, P0) < S(F̃ , P1) < S(P1, P1), then S is
not observationally proper for predicting Y |A inM′.

Proof. Let P0, P1 ∈ PY with P0 ̸= P1, and let M be such that PM (Y |do(A = 1)) = P1 and
PM (Y |do(A ̸= 1)) = P0. For the case where PM (A |do(F )) is deterministic, let

PM (A |do(F )) =

{
δ1 if F (Y |A = 1) = F̃

δ0 otherwise,

then Y |A is forecast-invariant in M with F ∗(Y |A = 1) = P1 and F ∗(Y |A ̸= 1) = P0 the correct
forecast, and the incorrect forecast F̃ (Y |A = 1) = F̃ and F̃ (Y |A ̸= 1) = P0 has

S(F ∗,M) = S(P0, P0) < S(F̃ , P1) = S(F̃ ,M),

so S is not proper with respect to M ∈M′.

For the case where PM (A |do(F )) has full support, let Q(A) be a probability distribution on A with
full support and such that Q(A = 1) < S(F̃ ,P1)−S(P0,P0)

S(P1,P1)−S(F̃ ,P1)
; note that this right-hand side is strictly

13Meaning that the Markov property holds: A⊥d
G B |C =⇒ A⊥⊥PM B |C for all sets of variables A,B,C.

14We can have a d-connection Y ̸⊥d
G(M) F |A but forecast invariance in M due to faithfulness violations after

intervention do(F ) (Boeken et al., 2025). However, forecast invariance for all M ∈ M′
G implies Y ⊥d

G F |A.
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positive by assumption. Then the mechanism

PM (A |do(F )) =

{
1
2 ·Q+ 1

2 · δ1 if F (Y |A = 1) = F̃
1
2 ·Q+ 1

2 · δ0 otherwise

has full support for all forecasts F and Y |A is forecast-invariant in M , and we have correct forecast
F ∗(Y |A = 1) = P1 and F ∗(Y |A ̸= 1) = P0 and observationally incorrect forecast F̃ (Y |A =

1) = F̃ and F̃ (Y |A ̸= 1) = P0, and we have expected scores

2S(F ∗,M) = (Q(A ̸= 1) + 1)S(P0, P0) +Q(A = 1)S(P1, P1)

< Q(A ̸= 1)S(P0, P0) + (Q(A = 1) + 1)S(F̃ , P1) = 2S(F̃ ,M),

so S is not observationally proper. ■

B.3 Section 4

Theorem 3. The utility score is incentive-compatible with U , and proper if Y |A is forecast-invariant
inM′ ⊆Mdt. If for a given causal graph G one considers the class of modelsM′

G ⊆Mdt which
are consistent with G, then forecast invariance of Y |A is necessary for the utility score to be proper.

Proof. Since S(F,M) =
∫
U(aF , y)PM (dy |do(F )) =

∫
U(a, y)PM (da,dy |do(F )) we auto-

matically have

argmax
F

S(F,M) = argmax
F

∫
U(a, y)PM (da,dy |do(F )),

so S is incentive compatible with U . If Y |A is forecast-invariant, for every M ∈ M′ the forecast
F (Y |A) = PM (Y |A) is a correct forecast. By definition of the Bayes act aF we have aPM (Y |A) =

argmaxa
∫
U(a, y)PM (dy |A = a) so for F ∈ PA→Y we have

S(F (Y |A),M) =

∫
U(aF , y)PM (dy |A = aF )

≤
∫

U(aPM
, y)PM (dy |A = aPM

) = S(PM (Y |A),M).

Since the expected score is maximised at a correct forecast we have that S is proper.
If Y |A is not forecast-invariant inM′

G, then by Theorem 1 there does not exist an observationally
correct forecast, so the utility score is not proper. (Note that in the proof of Theorem 1, the
counterexample for which no observationally correct forecast exists can easily be altered to let
A = aF be the Bayes act, so that the theorem holds in the classM′

G ⊆Mdt.) ■

Theorem 4. Let Y |A be forecast-invariant in M′ ⊆ Mdt, let U ∈ [0, 1], let S′ ∈
[0, 1] be a proper scoring rule in the classical sense and let there be a ∆ > 0 such that
min {|EM (U(a, Y ) | a)− EM (U(a′, Y ) | a′)| : a ̸= a′} > ∆ for all M ∈ M′, then S(F, a, y) :=
U(aF , y) + ∆ · S′(F (Y |A = aF ), y) is proper and incentive-compatible with U . If S′ is strictly
proper in the classical sense, then S is observationally strictly proper.

Proof. We have

S(F,M) =

∫
U(a, y)PM (da,dy |do(F )) + ∆S

′
(F,M),

so if F ∗ = argmaxF
∫
U(a, y)PM (da,dy |do(F )), then for any other F we have

S(F ∗,M)− S(F,M) =

∫
U(a, y)PM (da,dy |do(F ∗))−

∫
U(a, y)PM (da,dy |do(F ))

+ ∆(S
′
(F ∗,M)− S

′
(F,M))

> ∆+∆(S
′
(F ∗,M)− S

′
(F,M)) ≥ 0
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since S′ ∈ [0, 1], hence

argmax
F

S(F,M) = argmax
F

∫
U(a, y)PM (da,dy |do(F )),

so S is incentive compatible with U . If Y |A is forecast-invariant, then for every M ∈M′ the forecast
F ∗(Y |A) = PM (Y |A) is a correct forecast. Note that any optimiser F of S(F,M) must induce
the action aF = a∗ := aF∗ . If F (Y |A = a∗) ̸= F ∗(Y |A = a∗), then S

′
(F,M) < S

′
(F ∗,M) so

also S(F,M) < S(F ′,M), hence S is observationally strictly proper. ■

B.4 Section 5

Theorem 5. Let M′ ⊆ Mpc be such that for every M ∈ Mpc there exists an observationally
correct forecast for Y |A. If S is proper in the classical sense, then the divergence Dpc is positive
and proper. If S is strictly proper in the classical sense, then Dpc is observationally strictly proper.

Proof. If S is proper in the classical sense, we have for every F (Y |A) ∈ PA→Y and every a ∈ A
that

S(F (Y |A = a), PM (Y |A = a,do(F ))) ≤ S(PM (Y |A = a,do(F )), PM (Y |A = a,do(F )))

=: H(PM (Y |A = a,do(F )))

so the divergence is positive:

Dpc(F,M) =

∫
(S(PM (Y |A = a,do(F )), y)− S(F (Y |A = a), y))PM (da,dy |do(F ))

=

∫ (
H(PM (Y |A = a,do(F )))− S(F (Y |A = a), PM (Y |A = a,do(F )))

)
PM (da |do(F ))

≥ 0.
(1)

If F ∗(Y |A) is correct for M , then F ∗(Y |A = a) = PM (Y |A = a,do(F ∗)) for all a ∈ A such
that PM (A = a |do(F ∗)) > 0, so for every such a we have

S(F ∗(Y |A = a), PM (Y |A = a,do(F ∗))) = S(PM (Y |A = a,do(F ∗)), PM (Y |A = a,do(F ∗)))

= H(PM (Y |A = a,do(F )))

and by plugging this into (1) we get Dpc(F
∗,M) = 0, so −Dpc is indeed proper. If S is strictly

proper, then for any F (Y |A = a) ̸= PM (Y |A = a,do(F )) for some a such that PM (A =
a |do(F )) > 0 then we have

H(PM (Y |A = a,do(F )))− S(F (Y |A = a), PM (Y |A = a,do(F ∗))) > 0

and hence Dpc(F (Y |A),M) > 0, so −D is indeed strictly observationally proper. ■

Corollary 1. LetM′ ⊆ Mpc be such that for every M ∈ Mpc there exists an observationally
correct forecast for Y |A, let S be proper in the classical sense, and let (A1, Y1), ..., (An, Yn) ∼
PM (A, Y |do(F )). Any unbiased estimator D̂pc(A1, ..., Yn) of the performative divergence
Dpc(F,M) is proper, for any sample size n ∈ N such that D̂pc is well-defined. If S is strictly
proper in the classical sense, then D̂pc is observationally strictly proper.

Proof. By unbiasedness of the estimator we have
∫
D̂pc(A1, ..., Y1)dP

n
M (A, Y ) |do(F ) =

Dpc(F,M), so the result immediately follows from Theorem 5. ■

Lemma 1. Consider the setting of Corollary 1. For binary Y and S the Brier score, the estimator

D̂Brier
pc :=

1

n

n∑
i=1

(p̂ai
− fai

)2 − p̂ai(1− p̂ai)

nai
− 1
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is unbiased, where we write na :=
∑n

i=1 1{ai = a}, p̂a := 1
na

∑n
i=1 yi1{ai = a} and fa :=

F (Y = 1 |A = a). For Y ∈ Rn with integrable norm and S the energy score, the estimator

D̂energy
pc :=

1

n

n∑
i=1

EY∼Fai
[∥Y − yi∥]−

1

2

∑
j ̸=i

aj=ai

∥yi − yj∥

nai
− 1

− 1

2
EY,Y ′∼Fai

[∥Y − Y ′∥]

is unbiased.

Proof. Note that we have DBrier
pc (F,M) =

∑
a∈A(pa − fa)

2PM (A = a |do(F )). By taking the
expectation over the data, we have

E
[
D̂Brier

pc

]
= E

[∑
a∈A

na

n
(p̂ai − Fai)

2 − p̂ai
(1− p̂ai

)

nai − 1

]
.

Writing pa := P (Y = 1 |A,do(F )), for a given a ∈ A in the summation and by conditioning on na

we have E[(p̂a−fa)
2 |na] = (pa−fa)

2+ 1
na

pn(1−pn) and E[p̂a(1− p̂a) |na] =
na−1
na

pa(1−pa),

and hence E[na

n (p̂ai − fai)
2 − p̂ai

(1−p̂ai
)

nai
−1 |na] =

na

n (pa − fa)
2. Integrating out the na we have

E[na

n ] = PM (A |do(F )) and hence E[D̂Brier
pc ] =

∑
a∈A(pa−fa)

2P (A |do(F )) = DBrier
pc (F,M),

which is the desired result.

For the Energy score, the divergence DEnergy
pc is equal to∑

a∈A

(
EY∼Fa

Y ′∼Pa

[∥Y − Y ′∥]− 1

2
EY,Y ′∼Pa [∥Y − Y ′∥]− 1

2
EY,Y ′∼Fa [∥Y − Y ′∥]

)
PM (A = a |do(F )).

Taking the expectation of the first term in the estimator we obtain E
[
1
n

∑n
i=1 EY∼Fai

[∥Y − yi∥]
]
=∑

a∈A EY∼Fa,Y ′∼Pa [∥Y − Y ′∥]PM (A = a |do(F )). Denoting Ia := {i : Ai = a}, we see for the
second term that

1

n

n∑
i=1

1

2

∑
j ̸=i

aj=ai

∥yi − yj∥

nai
− 1

=
∑
a∈A

1

2

 1

na(na − 1)

∑
i ̸=j

i,j∈Ia

∥Yi − Yj∥

 na

n
,

where the part between brackets is a standard U-statistic for the norm (also known as Gini’s mean
difference) of independent random variables Y, Y ′ ∼ PM (Y |A = a,do(F )), so the expectation of
this term equals

∑
a∈A

1
2EY,Y ′∼Pa

[∥Y − Y ′∥]PM (A = a |do(F )) (Székely and Rizzo, 2013). The
expected value of the last term clearly equals

∑
a∈A

1
2EY,Y ′∼Fa [∥Y − Y ′∥]PM (A = a |do(F )), so

upon combining these results we see that E[D̂Energy
pc ] = DEnergy

pc . ■

B.5 Section 6

Theorem 6. Suppose that for every model M in the classM′ ⊆Mpc and every forecast F ∈ PA→Y
the distribution PM (A |do(F )) has full support and that Y |A is forecast-invariant, and let D be
the divergence induced by a strictly proper scoring rule. For any parameter θt for conditional
forecast Fθt(Y |A), we have that θt+1 := argminθ R

d
D(θ, θt) yields a correct forecast which is

performatively stable and performatively optimal with respect to RD(θ).

Proof. Since PM (A |do(Fθt)) has full support, we have by Theorem 8 that the decoupled perfor-
mative risk Rd

D is strictly proper, hence we have that Fθt+1 is correct. Similarly we have that
θt+2 := argminθ R

d
D(θ, θt+1) is correct as well, hence θt+1 = θt+2, so θt+1 is performatively sta-

ble. By Theorem 5 we have that the performative risk RD is strictly proper as well, so RD(θt+1) = 0,
hence θt+1 is performatively optimal. ■

C Proper scoring rules for non-performative conditional forecasts

As a special case of Definition 2, given a Markov kernel P (Y |A) ∈ PA→Y and distribution
P (A) ∈ PA, the conditional forecast F (Y |A) ∈ PA→Y is:
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• observationally correct if F (Y |A = a) = P (Y |A = a) for all a ∈ A such that P (A =
a) > 0;

• counterfactually correct if F (Y |A = a) = P (Y |A = a) for all a ∈ A such that
P (A = a) = 0;

• correct if it is observationally and counterfactually correct.

Given a conditional scoring rule S : PA→Y ×A → Y → R, conditional forecast F (Y |A) ∈ PA→Y
and model (P (Y |A), P (A)) ∈ PA→Y × PA, the expected score is

Sc(F (Y |A), P (A, Y )) :=

∫
S(F (Y |A), a, y)P (da,dy),

where P (A, Y ) := P (Y |A)⊗ P (A).
Definition 9. We call a conditional scoring rule

• observationally (strictly) proper relative to PA→Y × PA if Sc is (only) maximised at
observationally correct forecasts for all M ∈M′;

• counterfactually (strictly) proper relative to PA→Y × PA if Sc is (only) maximised at
counterfactually correct forecasts for all M ∈M′;

• (strictly) proper relative to PA→Y×PA if it is observationally and counterfactually (strictly)
proper, that is, if Sc is (only) maximised at correct forecasts for all (P (Y |A), P (A)) ∈
PA→Y × PA.

Recall that any scoring rule S : PY × Y → R induces a conditional scoring rule S′ through
S′(F, a, y) := S(F (Y |A = a), y).
Theorem 7. If S is a proper scoring rule for marginal forecasts with respect to PY , then the induced
conditional scoring rule is proper with respect to PA→Y × PA. If S is strictly proper, then the
induced conditional scoring rule is observationally strictly proper.

Proof. Given (P (Y |A), P (A)) ∈ PA→Y × PA we have for every a ∈ A with P (A = a) > 0 that
F (Y |A = a), P (Y |A = a) ∈ PY , and since S is proper in the classical sense we have

S(F (Y |A = a), P (Y |A = a)) ≤ S(P (Y |A = a), P (Y |A = a)). (2)
Integrating with respect to P (A) gives

Sc(F (Y |A), P (A, Y )) =

∫
S(F (Y |A = a), P (Y |A = a))P (da)

≤
∫

S(P (Y |A = a), P (Y |A = a))P (da) = Sc(P (Y |A), P ),

(3)

and since P (Y |A) is correct, S is proper. If S is strictly proper in the classical sense, then for
F (Y |A) ̸= P (Y |A) there is an a with P (A = a) > 0 such that F (Y |A = a) ̸= P (Y |A = a), in
which case we have a strict inequality in (2), giving a strict inequality in (3), so S is observationally
strictly proper. Note that any other Q(Y |A) ∈ PA→Y such that Q(Y |A = a) = P (Y |A = a) for
all a ∈ A with P (A = a) > 0 obtains the same expected score but need not be counterfactually
correct, so S is not counterfactually strictly proper. ■

C.1 Divergence for non-performative conditional forecasts

For a conditional forecast F (Y |A) ∈ PA→Y and model (P (Y |A), P (A)) ∈ PA→Y × PA, we
define the generalised conditional entropy and generalised conditional divergence as

Hc(P (A, Y )) :=

∫
H(P (Y |A = a))P (da)

Dc(F (Y |A), P (A, Y )) := Hc(P )− Sc(F (Y |A), P )

=

∫
S(P (Y |A = a), y)− S(F (Y |A = a), y)P (da,dy).

For the log-score, the entropy Hc is also known as the conditional entropy (Cover and Thomas, 2006).

For the divergence, we obtain a theorem similar to Theorem 7, that the generalised conditional
divergence is observationally (strictly) proper if it is induced by a (strictly) proper scoring rule.
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Theorem 8. If S is a proper scoring rule, then Dc is proper for conditional forecasts. If S is strictly
proper, then Dc observationally strictly proper.

Proof. Given (P (Y |A), P (A)) ∈ PA→Y × PA and proper scoring rule S we have

Dc(F (Y |A), P (A, Y )) =

∫
D(F (Y |A = a), P (Y |A = a))P (da) ≥ 0 (4)

and Dc(F (Y |A), P (A, Y )) = 0, so Dc is proper. If S is strictly proper then for every a ∈ A with
P (A = a) > 0 we have D(F (Y |A = a), P (Y |A = a)) = 0 if and only if F (Y |A = a) =
P (Y |A = a), hence Dc(F, P ) = 0 only if F is observationally correct. ■

D Proper scoring with inverse probability weights

By scoring with divergence, the utilised scoring rule is made performatively proper by subtracting
the (estimated) entropy. As alternative approach, one can multiply the score by (estimates of) the
inverse probability weights (IPWs) 1/PM (A |do(F )), and consider the expected IPW score:

SIPW(F,M) :=

∫
S(F (Y |A = a), y)

PM (A = a |do(F ))
P (da,dy |do(F ))

=
∑
a∈A

∫
S(F (Y |A = a), y)P (dy | a).

Chen et al. (2011) introduced the IPW score in settings where the principal knows PM (A) (which does
not depend on F ), who can then after every observation (a, y) properly score with SIPW(F, a, y) :=
S(F (Y |A = a), y)/PM (A = a). If the distribution PM (A |do(F )) has full support, then this
procedure is strictly proper:
Theorem 9. Suppose that for every model M in the classM′ ⊆Mpc and every forecast F ∈ PA→Y
the distribution PM (A |do(F )) has full support, and that Y |A is forecast-invariant in M ∈M′. If
S is (strictly) proper in the classical sense, then SIPW is (strictly) proper in the performative sense.

Proof. By forecast-invariance of Y |A we have

SIPW(F,M) =

∫ ∫
S(F (Y |A = a), y)PM (dy |A = a)da

=

∫
S(F (Y |A = a), PM (Y |A = a))da,

so for every a ∈ A the optimum of the integrand lies at the correct forecast F ∗(Y |A = a) =
PM (Y |A = a), and hence PM (Y |A) maximises SIPW, so SIPW is proper. If S is strictly proper,
then for every F with F (Y |A = a) ̸= F ∗(Y |A = a) for some a ∈ A we have S(F (Y |A =
a), PM (Y |A = a)) < S(F ∗(Y |A = a), PM (Y |A = a)), so SIPW(F,M) < SIPW(F ∗,M),
hence SIPW is strictly proper. ■

In Section F.3 we provide an example where SIPW is not counterfactually proper when
PM (A |do(F )) does not have full support.

A similar principle as for the divergence applies: if the principal does not have access to
PM (A |do(F )), an unbiased estimate of the mean IPW score suffices for the method to be (ob-
servationally strictly) proper. It is unclear whether unbiased estimators for the mean IPW score exist.
In Section G we provide a brief empirical investigation into the consistency of the plugin estimator
for the mean IPW score.

E Forecasts depending on covariates

E.1 Causal model including covariates

We extend the results from the main paper to the setting where we let the forecast F depend
explicitly on covariates X . In the main paper, we use the notation PM (Y |do(F )) such that for
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every forecast F ∈ PY we can meaningfully talk about the distribution of Y , given the forecast
F . If we let F depend on covariates X , then intervening on F would make the forecast invariant
of X , which is not what we intend to do. Therefore, we consider a parameter θ ∈ Θ ⊆ Rd for
some d which specifies a forecasting model Fθ(Y |X) ∈ PX→Y . In this setting, we will instead of
PM (Y |do(F )), for each observed x ∈ X consider the causal effect of a specific parameter θ and
its induced forecast Fθ(Y |X = x) on Y , which we express via PM (Y |do(θ)), which is equal to∫
PM (Y |do(θ, Fθ(X = x)))PM (dx) by consistency.

Formally, for marginal forecasts we let a parameter θ induce the forecasting model Fθ(Y |X) ∈
PX→Y , where for every observed value x and parameter θ the reported marginal forecast is
Fθ(Y |X = x) ∈ PY . For this setting let Mp+ be the set of causal models whose projection
onto X, θ, F, Y is a subgraph of Figure 5a.

For conditional forecasts, let θ induce the forecasting model Fθ(Y |A,X) ∈ PA×X→Y , where for
every observed value x and parameter θ the reported conditional forecast is Fθ(Y |A,X = x) ∈
PA→Y ; letMpc+ be the set of models whose projection onto X, θ, F,A, Y is a subgraph of Figure
5b.

X F Y

θ

(a) Mp+: Marginal forecasts

X F A Y

θ

(b) Mpc+: Conditional forecasts.

Figure 5: Causal graph of performative forecast depending on covariates X .

E.2 Section 2: Correctness of forecasts

In the following sections, in each definition or theorem, the corresponding definition/theorem number
from the main paper is added in parentheses.

Definition 10 (Definitions 1, 2). For a marginal forecast Fθ(Y |X = x), the parameter is correct for
M ∈Mpc+ if Fθ(Y |X = x) = PM (Y |X = x, do(θ)) holds for PM (X)-almost all x ∈ X . For a
conditional forecast Fθ(Y |A,X = x), the parameter θ is

• observationally correct if for PM (X)-almost all x ∈ X , for all a ∈ A such that P (A =
a |X = x, do(θ)) > 0 we have Fθ(Y |A = a,X = x) = P (Y |A = a,X = x, do(θ));

• counterfactually correct if for PM (X)-almost all x ∈ X , for all a ∈ A such that P (A =
a |X = x, do(θ)) = 0 we have Fθ(Y |A = a,X = x) = P (Y |A = a,X = x, do(θ));

• correct if it is observationally and counterfactually correct.

Definition 11 (Definition 3). We call the target Y |A,X forecast-invariant in M′ ⊆ Mpc+ if
the target distribution of Y |A,X does not depend on the forecast, so if PM (Y |A,X,do(θ)) =
PM (Y |A,X) for all M ∈M′.

Theorem 10 (Theorem 1). LetM′
G ⊆Mpc+ be the set of models compatible with causal graph G,

then the following are equivalent:

i) For every M ∈M′
G there exists an observationally correct parameter for Y |A,X;

ii) For every M ∈M′
G there exists a correct parameter for Y |A,X;

iii) Y |A,X is forecast-invariant for all M ∈M′
G;

iv) θ⊥d
G Y |A,X .

Proof. The implications iv) =⇒ iii) =⇒ ii) =⇒ i) apply without any change of the proof; for i)
=⇒ iv) one has to also specify an independent distribution PM (X) to finish the proof. ■
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E.3 Section 3: Scoring rules

Consider a scoring rule S : PY × X × Y → R, where given a marginal forecast Fθ(Y |X = x)
and an observed outcome y, the forecaster receives the score S(Fθ(Y |X = x), x, y). Considering
M ∈Mpc+, the expected score is

Sp+(Fθ,M) =

∫
S(Fθ(Y |X = x), x, y)PM (dx, dy |do(θ)).

For a conditional forecast Fθ(Y |A,X = x), conditional scoring rule S : PA→Y ×A×X ×Y → R,
observed action a and outcome y, the forecaster receives the conditional score S(F (Y |A,X =
x), a, x, y), and given a model M ∈Mpc+ the expected score is

Spc+(Fθ,M) =

∫
S(Fθ(Y |X = x), a, x, y)PM (da,dx, dy |do(θ)).

Definition 12 (Definition 5). For marginal forecasts, a scoring rule S is proper relative toM′ ⊆Mp+

if Sp+ is maximised at a correct forecast, and strictly proper if all maximisers are correct. We call a
conditional scoring rule

• observationally (strictly) proper relative toM′ ⊆ Mpc+ if Spc+ is (only) maximised at
observationally correct forecasts for all M ∈M′;

• counterfactually (strictly) proper relative toM′ ⊆Mpc+ if Spc+ is (only) maximised at
counterfactually correct forecasts for all M ∈M′;

• (strictly) proper relative toM′ ⊆Mpc+ if it is observationally and counterfactually (strictly)
proper, that is, if Spc+ is (only) maximised at correct forecasts for all M ∈M′.

Theorem 11 (Theorem 2). LetM′ ⊆ Mpc+ be the set of models such that Y |A,X is forecast-
invariant, where PM (A |X = x,do(θ)) has full support for all θ ∈ Θ, PM (X)-almost all x ∈ X
and all M ∈M′, or where PM (A |X = x,do(θ)) is deterministic for all θ ∈ Θ, PM (X)-almost all
x ∈ X and all M ∈M′. If S is a scoring rule with respect to PY such that there are P0, P1 ∈ PY
and forecast F̃ ∈ PY with F̃ ̸= P1 and S(P0, P0) < S(F̃ , P1) < S(P1, P1), then S is not
observationally proper for predicting Y |A,X inM′.

Proof. The proof proceeds as in the original proof of Theorem 2 with one adjustment: the constructed
counterexample specifies a mechanism for F → A→ Y ; specifying any independent distribution
PM (X) completes the proof. ■

E.4 Section 4: Decision theory

Given a conditional forecast Fθ, let the agent take an action which maximizes the expectation
of a utility U(a, x, y), so we have A = fA(Fθ, x) := argmaxa∈A

∫
U(a, x, y)Fθ(dy |x, a). Let

Mdt+ ⊆Mpc+ be the class of models with PM (A |X = x,do(θ)) = δaθ,x
.

Definition 13 (Definition 6). Given a utility U a set of causal models M′ ⊆ Mpc+, we
call a conditional scoring rule S incentive compatible with U if for all M ∈ M′ we have
argmaxθ Spc+(Fθ,M) = argmaxθ

∫
U(a, x, y)PM (da,dx,dy |do(θ)).

The utility score is given by S(Fθ, a, x, y) := U(fA(Fθ, x), x, y).
Theorem 12 (Theorem 3). The utility score is incentive-compatible with U , and proper if Y |A,X is
forecast-invariant inM′ ⊆Mdt+. If for a given causal graph G one considers the class of models
M′

G ⊆Mdt+ which are consistent with G, then forecast invariance of Y |A,X is necessary for the
utility score to be proper.

Proof. The proof proceeds analogous to the proof of Theorem 3. ■

Theorem 13 (Theorem 4). If Y |A is forecast-invariant in M′ ⊆ Mdt+,
U ∈ [0, 1], S′ ∈ [0, 1] is a proper scoring rule in the classical sense and
min {|EM (U(a, x, Y ) | a)− EM (U(a′, x, Y ) | a′)| : a ̸= a′} > ∆ > 0 for PM (X)-almost
all x ∈ X and all M ∈ M′, then S(F, a, x, y) = U(fA(Fθ, x), x, y) + ∆x · S′(F (Y |A =
fA(Fθ, x)), y) is proper and incentive-compatible with U . If S′ is strictly proper in the classical
sense, then S is observationally strictly proper.

Proof. The proof proceeds analogous to the proof of Theorem 4. ■
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E.5 Section 5: Divergence

Definition 14 (Definition 7). Given a scoring rule S : PY × Y → R, conditional forecast
Fθ(Y |A,X = x) ∈ PA→Y and causal model M ∈ Mpc+, the performative divergence is de-
fined as

Dpc+(Fθ,M) :=

∫
(S(PM (Y | a, x,do(θ)), y)− S(Fθ(Y | a, x), y))PM (da,dx,dy |do(θ)).

With performative entropy Hpc+(M |do(θ)) :=
∫
H(PM (Y | a, x,do(θ)))P (da,dx |do(θ)),

the performative divergence can be written as Dpc+(F,M) = −Hpc+(M |do(θ)) −
Spc+(Fθ(Y |A,X),M).
Theorem 14 (Theorem 5). If for every M ∈ M′ ⊆Mpc+ there exists an observationally correct
forecast for Y |A,X and if S is proper in the classical sense, then the divergence Dpc+ is positive
and proper. If S is strictly proper in the classical sense, then Dpc+ is observationally strictly proper.

Proof. The proof proceeds analogous to the proof of Theorem 5. ■

Corollary 3. Let for every M ∈ M′ ⊆ Mpc+ there be an observationally correct forecast
for Y |A,X , let S be proper in the classical sense, and let (A1, X1, Y1), ..., (An, Xn, Yn) ∼
PM (A,X, Y |do(Fθ)). Any unbiased estimator D̂pc+(A1, ..., Yn) of the performative divergence
Dpc+(Fθ,M) is proper, for any sample size n ∈ N such that D̂pc+ is well-defined. If S is strictly
proper in the classical sense, then D̂pc+ is observationally strictly proper.

E.6 Section 6: Parameter estimation

Definition 15 (Definition 8). Given a loss function ℓ(θ, a, x, y), the corresponding performative
risk is defined as R(θ) :=

∫
ℓ(θ, a, x, y)PM (da,dx, dy |do(θ)), and a minimiser θPO of the per-

formative risk is referred to as performatively optimal. The decoupled performative risk is defined
as Rd(θt+1, θt) :=

∫
ℓ(θt+1, a, x, y)PM (da,dx,dy |do(θt)), and parameter θPS is performatively

stable if θPS := argminθ R
d(θ, θPS).

We define the performative divergence and decoupled performative divergence as:

RD+(θ) := Dpc+(Fθ,M)

Rd
D+(θt+1, θt) :=

∫
D(Fθt+1

(Y | a, x), PM (Y | a, x,do(θt)))PM (da,dx |do(θt)).

Theorem 15 (Theorem 6). Suppose that for every model M in the class M′ ⊆ Mpc+, every
parameter θ ∈ Θ and PM (X)-almost all x ∈ X the distribution PM (A |X = x, do(θ)) has full
support, and that Y |A,X is forecast-invariant in M ∈ M′, and let D be the divergence induced
by a strictly proper scoring rule. For any parameter θt for conditional forecast Fθt(Y |A,X = x),
we have that θt+1 := argminθ R

d
D+(θ, θt) is performatively stable and performatively optimal with

respect to RD+(θ).

Proof. The proof proceeds analogous to the proof of Theorem 6. ■

F Examples

Python code to generate the plots of the examples in this section is provided in the supplements. The
code generates interactive 3D plots, which can be helpful for visual aid.

For interpreting these plots (see e.g. Figure 6), the reading guide of these plots is as follows. Global
optima are indicated with a blue line or dot, the correct forecast is indicated with a green dot. (Strict)
Properness means that (only) the correct forecast has the same expected score as the global optima
(z-axis). The grey, projections of the true and optimal forecasts can be used to read the score of
these forecasts (on the z-axis). Observational/counterfactual (strict) properness means that the global
optima are (only) at the correct values of F (Y |A = 0) and F (Y |A = 1). The bottom projections
can be used to read off whether the optimal forecasts coincide with the true forecast. This can
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separately be checked for A = 0 and A = 1. In these examples, at any F , the ‘counterfactual’ value
of A (that is, the values a ∈ A such that PM (A = a |do(F )) = 0) can be read off by checking the
direction in which the expected score at F is not piecewise constant.

F.1 Classical scoring rules which are not performatively proper

The following example is provided in the main paper (Example 4):

Example 6. Let A = Y = {0, 1} and M be such that Y |A is forecast-invariant, with PM (Y =
1 |A = 0) = 0.5, PM (Y = 1 |A = 1) = 0.25 and the ‘decision rule’ A = argmaxa F (Y = 1 |A =
a). If the forecaster reports the correct forecast the expected Brier score is−0.5·(0.5)2−0.5·(0.5)2 =
−0.25, and if the forecaster reports F (Y = 1 |A = 0) = 0.2, F (Y = 1 |A = 1) = 0.25 then the
expected score is −0.25 · (0.75)2 − 0.75 · (0.25)2 ≈ −0.19. See also Figure 6: the scoring rule is
observationally strictly proper since for the observed value A = 1 the score is maximised at a correct
forecast, but it is not counterfactually proper since it pays off to misreport for the value A = 0 which
is not observed. This can also be observed in the figure using the bottom projection of the optimal
forecasts and the unique, correct forecast.

The scoring rule in this example is not (counterfactually) proper, but it is observationally strictly
proper. As an extension of the self-defeating prophecy, if we pick the harder to predict value of A
when the forecast for the easier to predict value of A gets close to being correct, this provides an
example where the score is not observationally proper.

Example 7. Consider Example 6, but with the decision rule

A =

{
1 if F (Y = 1 |A = 0) ≤ 0.4 and F (Y = 1 |A = 1) ≥ 0.4

0 otherwise.

Since PM (Y = 1 |A = 1) = 0.25 is much easier to predict than PM (Y = 1 |A = 0) = 0.5,
even if an incorrect prediction F (Y = 1 |A = 0) = F (Y = 1 |A = 1) = 0.4 is made such that
we observe A = 1 the expected score −0.25 · (0.6)2 − 0.75 · (0.4)2 = −0.21 is higher than for
correctly predicting and observing PM (Y = 1 |A = 0) = 0.5: if the forecaster reports her true
belief the expected score is −0.5 · (0.5)2 − 0.5 · (0.5)2 = −0.25. Hence, the scoring rule is neither
observationally nor counterfactually proper. See the bottom projection in Figure 7a: the optimal
forecasts have neither F (Y |A = 0) nor F (Y |A = 1) correct.

One could expect this problem to be resolved if one considers a stochastic policy for deciding A
given F . However, the following example shows that full support of PM (A |do(F )) does not resolve
this issue:

Example 8. Consider the decision rule which is a mixture of the mechanism of Example 7 and a
uniform distribution over A = 0, 1: with probability 1/3 there is uniform ‘exploration’, and with

0.0 0.20.40.60.81.0

F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

0.7
0.6
0.5
0.4
0.3
0.2Expected score

Figure 6: Expected Brier scores Spc for the mechanisms PM (A |do(F )) as defined in Example 6. It
is observationally strictly proper, counterfactually improper.

24



0.0 0.20.40.60.81.0

F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

0.7
0.6
0.5
0.4
0.3
0.2Expected score

(a) Example 7:
observationally improper,
counterfactually improper.

0.0 0.20.40.60.81.0

F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

0.7
0.6
0.5
0.4
0.3

0.2Expected score

(b) Example 8:
observationally improper,
counterfactually improper.

Figure 7: Expected Brier score for the self-defeating prophecy, without positivity and with positivity.
In both mechanisms expected score is neither observationally proper nor counterfactually proper

probability 2/3 the decision rule

A =

{
1 if F (Y = 1 |A = 0) ≤ 0.4 and F (Y = 1 |A = 1) ≥ 0.4

0 otherwise

is used. For this mechanism the correct forecast obtains the expected score of ( 13 ·
1
2 +

2
3 ) · (−0.25) +

1
3 ·

1
2 · (−0.19) ≈ −0.24, and if the forecaster reports F (Y = 1 |A = 0) = F (Y = 1 |A = 1) = 0.4

then the expected score is ( 13 ·
1
2 ) · (−0.25) + ( 13 ·

1
2 + 2

3 ) · (−0.21) ≈ −0.22, so the scoring rule is
not observationally proper. See Figure 7b.

F.2 Incentive-compatible and proper utility scores

Example 9. Consider Example 6, interpreted as a forecast being given to an agent with utility
U(a, y) = y; then indeed A = aF = argmaxa F (Y = 1 |A = a). The optimal action for the agent
is a∗ = 0, but to maximise her score (with respect to the Brier score, see Figure 6) the forecaster
reports F (Y = 1 |A = 0) = 0.2 and F (Y = 1 |A = 1) = 0.25 inducing the agent to take the
suboptimal action aF = 1. Despite the forecast being observationally correct, it is not incentive-
compatible with U .
However, if we use the utility score then every forecast with F (Y = 1 |A = 0) > F (Y = 1 |A = 1)
induces the optimal action A = a∗ = 0 so it obtains the maximum expected score: see Figure 8a.
(To improve visibility we have not depicted the global optima.) Since all forecasts that induce the
action A = 0 obtain the same score, it is clear that the utility score is proper but not strictly proper.
If we add any ∆ < 0.25 times the Brier score to the utility score then the resulting score becomes
observationally strictly proper: the score is uniquely maximised for the correct value of F (Y |A = 0);
see Figure 8b.

F.3 Scoring with divergence and IPW score

Example 10. Consider the setting of Example 7 where there is no positivity of PM (A |do(F )).
Recall that the Brier score is neither observationally proper nor counterfactually proper. However, if
we consider the performative divergence related to the Brier score, as depicted in Figure 9a, we see
that the correct forecast is an optimum, so it is proper. Moreover, for any forecast that attains the
optimum we see that the action A = 0 is chosen (since the score does not depend on forecasts for
A = 1) and every optimal forecast is correct for A = 0.
In Figure 9b we see that the IPW score is neither observationally nor counterfactually proper, similar
as in Figure 7a.
When adding uniform exploration with probability 1/3 we have positivity as in Example 8, we see
that the the divergence and IPW score as depicted in Figure 9c and 9d are strictly proper: the correct
forecast is the unique optimiser.
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0.0 0.20.40.60.81.0

F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

0.25
0.30
0.35
0.40
0.45
0.50
0.55

Expected score

(a) Utility score:
observationally proper,
counterfactually proper.

0.0 0.20.40.60.81.0

F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

0.1
0.0
0.1
0.2
0.3
0.4Expected score

(b) (Utility score) + ∆(Brier score):
observationally strictly proper,
counterfactually proper.

Figure 8: Expected scores of Example 9. Both decision scoring rules are incentive compatible with
utility U , since every forecast which attains maximum score induces the optimal action A = a∗ = 0.

0.0 0.20.40.60.81.0

F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

0.5
0.4
0.3
0.2
0.1

0.0Expected score

(a) Divergence:
observationally strictly proper,
counterfactually proper
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F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

0.7
0.6
0.5
0.4
0.3
0.2Expected score

(b) IPW score:
observationally improper,
counterfactually improper
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(c) Divergence:
strictly proper

0.0 0.20.40.60.81.0

F(Y=1|A=1)
0.00.20.40.60.81.0

F(Y=1|A=0)

1.2

1.0

0.8

0.6

0.4

Expected score

(d) IPW score:
strictly proper.

Figure 9: Plots related to Example 10. If there is no positivity (9a and 9b) then the divergence is
observationally strictly proper and the IPW score is not observationally proper. If there is positivity
(9c and 9d) then the divergence and IPW score are strictly proper.
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G Bias and consistency of estimates of divergence and IPW

For general scoring rules S, plugin estimators for the divergence and IPW score are given by

D̂pc(F,M) =
1

n

n∑
i=1

(
S
(
P̂ (Y | A = ai,do(F )), yi

)
− S (F (Y | A = ai), yi)

)
ŜIPW(F,M) = − 1

n

n∑
i=1

S(F (Y |A = ai), yi)

P̂ (A = ai |do(F ))
,

using estimates of P̂ (Y | A = ai,do(F )) and P̂ (A = ai |do(F )). To investigate the variance
and the reliability of these scoring methods at various sample sizes, we consider the mechanism of
Example 8, so where PM (A |do(F )) has full support for every F ∈ PY . In this setting, the unbiased
estimator for the divergence is given by

D̂Brier
pc :=

1

n

n∑
i=1

(p̂ai
− fai

)2 − p̂ai(1− p̂ai)

nai
− 1

, (5)

where we write na :=
∑n

i=1 1{ai = a}, p̂a := 1
na

∑n
i=1 yi1{ai = a} and fa := F (Y = 1 |A =

a).

We consider two forecasts: the correct forecast F ∗(Y |A = 0) = 0.5, F ∗(Y |A = 1) = 0.25,
and an incorrect forecast F̃ (Y |A = 0) = 0.7, F̃ (Y |A = 1) = 0.45. For both methods, the
correct forecast should obtain a lower score than the incorrect forecast. For the sample sizes
n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 46} we simulate for both the correct and the incorrect forecast,
10.000 datasets of (A1, Y1), ..., (An, Yn) ∼ PM (A, Y |do(F )), for F = F ∗ and F = F̃ . We
subsequently estimate on every dataset the divergence and IPW score, and from those 400 repetitions
we take the median and 5 and 95-percentiles. The results are depicted in Figure 10. This verifies
that the plugin estimators for thr Brier divergence and IPW Brier score are biased but asymptotically
unbiased, and that the estimator (5) for the Brier score is indeed unbiased.

These experiments can be run within 15 seconds on an Apple M2 Pro processor with 16GB RAM.
Python code to run these experiments is provided in supplementary files.
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Figure 10: Estimated divergence/IPW score (solid line) and true divergence/IPW score (dashed line),
for a correct forecast (green) and an incorrect forecast (red), with 90% confidence intervals.
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