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Abstract

We establish topological necessary and sufficient conditions under which a pair of statistical
hypotheses can be consistently distinguished when i.i.d. observations are recorded only to finite
precision. Requiring the test’s decision regions to be open in the sample-space topology to accommo-
date finite-precision data, we show that a pair of null- and alternative hypotheses Hy and H; admits
a consistent test if and only if they are F, in the weak topology on the space of probability measures
W := Ho U H;. Additionally, the hypotheses admit uniform error control under Hy and/or Hy if
and only if Hy and/or H; are closed in W. Under compactness assumptions, uniform consistency is
characterised by Hg and H; having disjoint closures in the ambient space of probability measures.
These criteria imply that — without regularity assumptions — conditional independence is not
consistently testable. We introduce a Lipschitz-continuity assumption on the family of conditional
distributions under which we recover testability of conditional independence with uniform error
control under the null, with testable smoothness constraints.

1 Introduction

Whether a statistical hypothesis is testable remains an important question across the natural and social
sciences. For example, judgements of conditional independence underlie many scientific inferences
and are particularly fundamental in structural causal discovery (Spirtes et al., 1993). Recent results
demonstrate that, unless regularity assumptions are made, conditional independence is not testable with
finite-sample bounds on the probability of errors of the first type (Shah and Peters, 2020). Nevertheless,
it was believed that conditional independence is consistently testable (Gyorfi and Walk, 2012). The true
situation turns out to be more complicated (Neykov et al., 2021). These recent results in conditional
independence testing are arrived at via ingenious ad hoc arguments. Despite recent developments, there
remains no simple, unified criterion for characterizing all and only the testable statistical hypotheses. In
this respect, statistics is in sharp contrast to the theory of computation, where the testable hypotheses
(co-semidecidable sets) receive elegant complexity-theoretic characterizations (Kelly, 1996). In this
paper, we attempt to remedy this situation by laying out general topological conditions for statistical
testability, generalizing results from Dembo and Peres (1994), Ermakov (2017), Genin and Kelly (2017)
and Kleijn (2022).

We demonstrate our results on the following elementary parametric examples since, contrary to
many nonparametric hypotheses like conditional independence, their topological properties are evident.
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Let X1, ..., X, ~ Bernoulli(p) i.i.d. and consider for given € > 0 the pairs of hypotheses

Ho:pel0,1]NQ Hy:pe[0,1]\ Q. (1)
Ho:pel0,1]NnQ Hy:pel0,1]n(Q+V2) (2)
Hy:pe|0,1/2] Hy:pe(1/2,1] (3)
Hy:pe|0,1/2) Hy:pe(1/2,1] (4)
Hy:pel0,1/2—¢) Hy:pe(1/2+¢,1] (5)

As might be intuitively clear, for these pairs of hypotheses one can achieve different consistency
properties of the test, ranging from uniform consistency for (5) to mere consistency for (2), and
(1) is not consistently testable. Our main results, presented in Section 2, state that these modes of
testability are characterised by the topological properties of the hypotheses: whether they are Fy (i.e.
a countable union of closed sets), closed or open, or clopen with respect to the subspace topology on
W := Hg U Hy, or metrically separated. We don’t restrict to parametric hypotheses, but we consider
arbitrary nonparametric hypotheses Hy and H; as subsets of the space of Borel probability measures
P(X) on a separable metric space X'. The topological characterisations are with respect to the weak
topology on P(X). The data is assumed to be i.i.d. from a single P in either Hy or H;. Notably,
our results do not require any regularity conditions on the probability measures under consideration.
However, it turns out that the weak topology characterises testability with some type of regularity: that
the critical regions of the tests are open — a property that is useful when considering finite-precision
measurements, to be further motivated in Section 1.1 below.

Our main application of these topological characterisations is to analyse the feasibility of conditional
independence testing. For given sample spaces X', Y, Z and set of probability measures W C P(X x
Y x Z) we consider

Hy:={PeW:X1Y|Z} H ={PcW:XLY|Z}, (6)
P

where conditional independence, denoted with X IlpY | Z, means that for all measurable A and B the
factorisation P(X € A, Y € B|Z) =P(X € A|Z)P(Y € B|Z) holds P(Z)-almost surely. Conditional
dependence is denoted with X JpY | Z. In Section 3, we show that conditional independence and
conditional dependence are both dense in the weak topology on P(X x Y x Z). It follows from the Baire
category theorem that there does not exist a consistent FP-test for conditional independence when
W = P(X xY x Z). Hence, conditional independence testing requires assumptions, that is, a restriction
of the set W. We introduce the space of distributions with Lipschitz conditional distributions P(X | Z)
or P(Y | Z) and investigate some properties in Section 4. We show that if the Lipschitz constant is
bounded then this space is closed in the weak topology, and conditional independence is closed in
this space. In Section 5 we discuss the consequences for various modes of testability of conditional
independence.

1.1 Accommodating finite-precision measurements

Given a test ¢, : X™ — {0,1} and a sample z1, ..., x,,, the verdict of the test is given by the evaluation
on(x1,...,xy). From now on, we write {¢, = i} for the region {x € X" : p,(x) = i}. In standard
presentations of hypothesis testing, the acceptance and rejection regions of a test are taken to be
arbitrary measurable sets. But is it really natural to consider a test that rejects if the sample point is
rational-valued? Or if it is precisely 77 If measurements of real-valued quantities can be made with
only finite precision, such tests cannot be implemented.

In the following, we will consider tests whose decision regions {¢, = 0} and {y, = 1} are open in
the topology on the sample space X™. If this condition is satisfied, some amount of finite precision is
sufficient to determine the verdict of the test, no matter where in {¢,, = 0} or {¢, = 1} the sample
lands. If A™ is connected, {¢, = 0} and {¢, = 1} cannot both be open and cover the entire sample
space. Therefore, it is necessary to introduce the region {p,, = 2} that recommends neither acceptance
nor rejection of Hy, but suspension of judgement.



Definition 1. A finite-precision test (FP-test) is a measurable map ¢, : X" — {0, 1,2} such that
{¢n =0} and {p, = 1} are open.

We sometimes abuse terminology by referring to a testing sequence ¢ = (pn)nen as a test. Note
that if the sample lands in the boundary of {¢,, = 2}, no finite-precision measurement will be precise
enough to verify that it is outside of the decision regions {y, = 0} and {¢, = 1}. That situation is
not so vicious: it will be impossible to discern the verdict of the test, which is practically equivalent to
suspension of judgement. Every FP-test can be transformed into a binary test by merging {¢,, = 2}
with {¢p, = 0} or {¢, = 1}. For a consistent FP-test we have P"(¢,, = 2) — 0, so consistency is
maintained by transforming it into a binary test; for maintaining uniform consistency, once should be
more careful. More details are given in Section 2.

Why is it reasonable to restrict our attention to finite-precision tests? After all, measurements are
made with bounded, not arbitrary finite, precision. If a sample landing in {¢, = 0} is sufficiently close
to its boundary, it might still be impossible to determine the verdict of the test if the precision required
exceeds that of our measurement device. The first thing to notice is that this requirement is already
more realistic than the usual one in which we impose no conditions on the complexity of the zones.
Furthermore, our positive results are strengthened: if it is informative to learn that a hypothesis is
testable with arbitrary zones, it is even more informative to learn that it is testable with arbitrary but
finite precision. Negative results are still informative: if you cannot test a hypothesis with arbitrary
but finite precision, then you certainly cannot test it with bounded precision.

A more explicit justification of the restriction to open regions requires a model of measurement.
Let B be a basis for a topology on the sample space X'. We interpret B(x), the local basis at z, in
the following way: the elements of B(x) are the possible outcome of measurements performed on
z. In other words: we assume that the set of feasible measurements of x satisfies the properties of
a local basis. Moreover, if E € B(x), we assume that a sufficiently diligent empiricist measuring
x will eventually produce a measurement F' C F in B(z) that is at least as precise as E. On this
interpretation, it is always possible, with sufficient measurement effort, to determine whether a sample
has landed in {¢ = 0} or {¢ = 1}. The appropriate basis is determined by the available measurement
protocol. If we are observing the outcomes of a coin toss, the appropriate basis is {{H},{T'}}, since it
is possible to directly observe the outcome of a coin toss. For real-valued measurements, the usual
basis of open intervals with rational endpoints is a natural candidate. For more on topological models
of measurement, see Vickers (1990); Kelly (1996); Genin and Kelly (2017); Resende (2021).

1.2 Consistency, uniform consistency, and error control

Given a pair of hypotheses Hy, H; C P(X), a sequence (¢n)nen of tests o, : X" — {0, 1,2} is weakly
consistent if for i € {0,1} and all P € H; we have

P"(on =1) — 1,
and strongly consistent if for i € {0,1} and all P € H; we have
P> (¢, # i for finitely many n) = 1.

This is equivalent to the condition P*°(liminf,{¢, = i}) = 1 and to lim,,_,oc P> (Im > n : ¢, # i) = 0.
We say that a pair of hypotheses is weakly (strongly) consistently testable if there exists a weakly
(strongly) consistent testing sequence. Hypotheses which are strongly consistently testable are sometimes
referred to as discernible (Dembo and Peres, 1994).

For binary tests, it has been shown by Nobel (2006) that the existence of a weakly consistent test
is equivalent to the existence of strongly consistent test. This also applies to FP-tests, as is shown
in the following result. A proof of the equivalence of weak and strong consistency of binary tests is
achieved by changing one of the strict inequalities to an inequality in the definition of ¢, below.

Theorem 1. Given a pair of hypotheses Hy, Hy C P(X), there exists a weakly consistent FP-test if
and only if there exists a strongly consistent FP-test.



Proof. Any strongly consistent test is also weakly consistent. Conversely, let ¢, : X™ — {0,1,2} be
weakly consistent, let k, := |[log(n)| and m,, := |n/k,]. For i € {0,1} define the random variable
Vi o= H{@r, (Xkyji1s o Xppjah,) = 0} such that Yio . Y! ) areiid., and let

0 if LSty s 1/
Un(X1, o Xp) =4 1 if 1 -ty > 12

2 otherw1se.

Fix i € {0,1}. For P € H; we have p!, := EP[Yg’j] = P (0k, (Xkpjt1s s Xkpjrkn) = 1) — 1 by weak
consistency of ¢,,, and hence for every ¢ € (0,1/2) there is an Np such that 1/2 < ui —¢ for all n > Np,
so using Hoeffding’s inequality this gives

mp—1 1 mp—1 . .
P (n # i) = Z pEu2) <P ST ) <
n =0

1 e 1 2
P (Yo, —n)|>e| < Q¢ 2mne”
n

j=0
we get >, 5 v, e~2mne® < 50, hence Yoo Py ) < 00, so the result follows from the Borel-Cantelli
lemma. |

On top of consistency, one can consider various notions of error control: bounds on error probabilities,
asymptotically or for finite samples, and uniform consistency, all under Hy and/or H;. For binary
tests, Pfanzagl (1968) has shown that the existence of a uniformly weakly consistent test (property
(8) below) is equivalent to the existence of a uniformly strongly consistent test (property (9)). The
following result shows that testability with various asymptotic notions of uniform error control are
equivalent, both for one-sided and two-sided error control. If for only one of the hypotheses the error is
uniformly controlled asymptotically, then it can also be controlled at finite sample sizes. The following
theorem is stated in terms of FP-tests, but the result also holds for binary tests, following the same
alteration as suggested right before Theorem 1.

Theorem 2. Let a pair of hypotheses Hy, Hi C P(X) be given, and let K C {Hy, H1} be a set of
hypotheses. For every o > 0 there exists a consistent FP-testing sequence (@n)nen with for all H; € K

lim sup P"(p, #1i) < « (7)

n—oo ]peHi

if and only if there exists a consistent FP-testing sequence (on)nen with any of the following uniform
consistency properties for all H; € K:

lim sup P"(pn # 1) = 0; (8)
n—oo Pqu,
lim sup P®(3Im >n: ¢, #1i) =0; 9)
n—oo PEH»L
lim su P"™ (o, #1) = 0. 10
i s S P (o 1) (10)

If for only a single hypothesis the errors are controlled, say K = {H;}, the above is equivalent to the
statement that for every a > 0 there exists a consistent FP-testing sequence (on)nen with any of the
following properties for all n € N:

sup P(on # ) < 01 (11)
PeH;
sup P*(In: ¢, #1i) < o (12)
PeH;
su P"(on < a. 13
3 )

Throughout, it is equivalent to consider weak or strong consistency of the tests.



Proof. Every claim with strong consistency implies the corresponding claim with weak consistency.
Let K g {Hg,Hl}.

(7) with weak consistency = (10) with strong consistency: Let ¢ € (0,1/2) and let ¢, : &A™ —
{0,1,2} be such that there is a N such that suppcy, P"(pn # i) < 1/2 — ¢ for all n > N for all
H; € K. Then equivalently infpe g, P" (@, = 1) > 1/2 4+ . With ¢, and Np as defined in the proof
of Theorem 1, we have that Np = N is independent of P, and we obtain P™ (v, # i) < 2e~2mne? for
all n > N, and hence suppeg, > ,on P (U0 #1) <D on e~2mne® < 5o, As the tail of a convergent
sequence, we get Suppe . O on P (U # i) — 0. N

(10) = (9) = (8) = (7) If for every a > 0 there is an N such that suppcy, D>, P (0m #
i) <« for all n > N, then a

Pn(@n?’éi)gpm(amzn:(ﬁm#i)gme(gom#i)ga

m>n

for all n > N, so we obtain the implications. This holds both with weak and strong consistency.
Further, without loss of generality, let K = {Hp}.

(10) = (13) For every a > 0 there is an N such that suppc g, D, P"(pn # 0) <« for all n > N.
Then ¢, :== 1{n > N}, satisfies (13), both for weak and strong consistency.

(13) = (12) = (11) This follows from the union bound

n=1
both with weak and strong consistency.

(11) = (7) Follows immediately, both with weak and strong consistency. [ |

We will loosely refer to these conditions as uniform error control under H;. However, interpreting
the conditions of the FP-tests in Theorem 2 as ‘error control’ is a slight misnomer, since the outcome
n, = 2 should be interpreted as suspension of judgement and not as an error. For one-sided error
control on say K = {H;} this is a futile discussion: Theorem 4 below shows that the existence of a
consistent FP-test which satisfies (8) is equivalent to the existence of a consistent FP-test which satisfies
the condition limy, suppe g, P"(pn =1 — i) = 0. A different interpretation of this apparent distinction
is whether one wants the measure of the suspension zone {¢,, = 2} to converge to 0 pointwise, or
uniformly over all P € H,.

For two-sided error control this distinction is important. Pointwise or uniform convergence of the
measure of the suspension zone are essentially different, and they correspond to different topological
properties of the hypotheses, as shown below in Section 2.

1.3 Related literature

In a sufficiently regular parametric setting, Berger and Wald (1949) provide necessary and sufficient
conditions for the existence of a test with Type-I and Type-II error control with a = g =1/2. A
rather technical characterisation for the existence of uniformly consistent tests has been given by
Berger (1951). A topological characterisation has been given by LeCam and Schwartz (1960) in terms
of a topology of setwise convergence on the space US2 ;P(X)" of all n-fold products of probability
measures on X. The downside of this condition is that it is hard to verify since this topology is not
metrisable, not first countable and hence “not very easily accessible” (LeCam and Schwartz, 1960) —
see also Kleijn (2022). In contrast, later work (and this paper as well) considers topological properties
of Hy, H; as subsets of P(X), instead of the space of all n-fold products. Cover (1973) considered
testing whether the bias of a coin is rational or irrational (example (1)), and found that there exists a
consistent test for testing the null of rational bias versus the alternative of irrational bias, if a subset of
Lebesgue measure zero is removed from the alternative. Dembo and Peres (1994) show that if Hyp and
H; are disjoint sets which are F, in the weak topology on W = Hy U Hj, then there exists a strongly



consistent test. For the converse direction, they note that the hypotheses Hy := {0, : € [0,1]NQ} and
Hy := {6, : # € [0,1] \ Q} are discernible by the test @n(z1,..., 2) := Ly 1pg(x1), but Hy is not F,'
so some regularity condition has to be imposed for such a topological characterisation of discernibility.
Dembo and Peres (1994) prove this characterisation under the assumption that every measure in W has
a p > l-integrable density, and Kleijn (2022) (Corollary 9.4.23) weakens this assumption to uniformly
integrable densities. We show without any assumptions on the hypotheses Hy and H; that consistent
FP-testability is characterised by hypotheses that are F, in the weak topology, so requiring the regions
{¢n =0} and {p, = 1} to be open is the regularity condition which resolves the issue raised by Dembo
and Peres (1994).

Ermakov (2017) (Theorem 4.4) characterises the existence of consistent tests in terms of the
topology of setwise convergence under the assumption of o-compactness of W (which is satisfied if e.g.,
one assumes p > l-integrable densities), in which case the topology of setwise convergence is equivalent
to the weak topology (Génssler, 1971, Lemma 2.3). For a comprehensive overview of the literature on
consistent hypothesis testing, we refer to Kleijn (2022), Chapter 9.

Larsson et al. (2026) show that a test — as general [0, 1]-valued random variable on the under-
lying measurable space, so without i.i.d. assumption — that satisfies the condition suppc g, Ep[¢] <
infper, Ep[y] exists if and only if the weak® closures (in the space of bounded finitely additive measures)
of the convex hulls of Hy and H; are disjoint.

Our results in Section 2 are largely based on the work by Genin and Kelly (2017), who work under
the assumption that the sample space X’ has a subbasis O such that P(0A) = 0 for all P € W and
A € O — this assumption is satisfied if e.g., all measures in W have a density with respect to some
dominating measure (Bogachev, 2007, Proposition 8.2.8). The results of Genin and Kelly (2017) are
applied to the study of causal discovery in Genin and Mayo-Wilson (2020); Genin (2021); Genin and
Mayo-Wilson (2024).

Regarding conditional independence testing, Shah and Peters (2020) and Neykov et al. (2021) show,
in the setting where the variables are real-valued and the probability measures have densities, that no
conditional independence test with Type-I error control and consistency under the alternative exists.
Lundborg et al. (2022) generalise this to a specific setting where the samples are L?([0, 1], R) functions,
e.g. continuous-time stochastic processes. Gyorfi and Walk (2012) provide a conditional independence
test and prove that it is strongly consistent, but Neykov et al. (2021) point out a mistake in their
proof, so it remains an open question whether conditional independence is consistently testable. We
answer this question for FP-testability by showing that if X, Y, Z take values in arbitrary Polish spaces
X,Y, Z where Z has no isolated points, there exists no consistent FP-test for conditional independence
X1Y|Z.

In Section 4 we show that conditional independence is weakly closed under similar conditions as
considered by Barbie and Gupta (2014); we provide a more direct, alternative proof. See Section
4.3 for further discussion of related literature In Section 5, we provide sufficient conditions for the
consistent testability of conditional independence with and without with uniform error control under
Hjy. Our conditions for testability with error control are similar to those considered by Warren (2021)
and Neykov et al. (2021). To the best of our knowledge, our conditions for consistent testability are
novel: we require that only one of the maps

2= P(X | Z =2),

2= PY | Z=2)
satisfies a regularity condition. For a more in-depth comparison with existing literature, see Section
5.1.
1.4 The weak topology

We will characterise FP-testability in terms of topological properties of the hypotheses Hy, Hy C P(X),
where X is a separable metric space, and P(X) denotes the set of probability measures on the Borel
o-algebra B(X) on X. Recall that a sequence of probability measures P;(X),Po(X),... converges

'This holds since [0,1] \ Q is not F, and z + &, is a homeomorphism (Bogachev, 2007, Lemma 8.9.2).



weakly to another probability measure P(X), denoted with P, = P, if [ f(x)dP,(z) — [ f(z)dP(x) for
all continuous functions f : X — R. The weak topology on the space of Borel probability measures P (X))
is the smallest topology that makes the maps P~ [ f(z)dP continuous for all bounded continuous f.
Because X is separable, the weak topology is separable and metrisable, for example by the bounded
Lipschitz metric® dgr,, defined by

s (Bl X),PA(X)) = sup { ‘ [ raeo -

:feBL(X;R)},

where BL(Y; R) := {f X SR ( sup, o0 LELE <1 and | [l < 1}. If X is complete, then dp;,
is complete as well. See also Bogachev (2007), Theorem 8.3.2. Since the weak topology is sequential,
convergence in the weak topology coincides with weak convergence. Weak convergence P, — P is
equivalent to the condition that liminf,, P,(A) > P(A) for all A C X open, and to the condition
that limsup, P,,(B) < P(B) for all B C X closed. This is also known as the ‘Portmanteau theorem’
(Bogachev, 2007, Theorem 8.2.3). A subbasis for the weak topology is given by sets {P : P(A) > ¢},
with A C X open and g € [0,1]; see for example Bogachev (2007), Section 8.2. This means that
for any weakly open set H C P(X), there exist open sets A;; € X and ¢;; € [0,1] such that
H = U;e; Nj2 {P : P(Aj5) > gi5} for some index set I. Because X' and hence P(X) are assumed to be
separable, the index set I can be taken to be countable.

2 Main results

Let X be a separable metric space, and let Hg, H1 be disjoint sets of Borel probability measures on X.
Theorem 3. The following are equivalent:

1. there exists a consistent FP-test;

2. Hy and Hy are F, in the weak topology on W := Hy U H;.
Theorem 4. The following are equivalent:

1. there exists a consistent FP-test @, with

lim sup P"(p, =1) = 0;

n—oo PGHO

2. there exists a consistent FP-test o, with

lim sup P"(p, #0) = 0;

n—oo PEHO

3. Hy is closed in the weak topology on W := Hy U Hq;
Theorem 5. The following are equivalent:

1. there exists a consistent FP-test p,, with fori € {0,1}:

lim sup P"(¢, =1 —1) = 0;
n—oo PeH;

2. Hyg and Hy are clopen in the weak topology on W := Ho U Hj.

Theorem 6. Let Hy and Hy be contained in some compact set in the weak topology, then the following
are equivalent:

2The bounded Lipschitz metric is strongly equivalent to the Kantorovic-Rubinstein metric, and weaker than the
p-Wasserstein metric W, (we have dpr < W1 < Wy, with equality dgr. = W if the measures under consideration have
bounded support (Bogachev, 2007, Theorem 8.10.45)) and the total variation metric drv .



1. there exists an FP-test @, with {¢y, = 0} and {¢, = 1} having disjoint closures, and fori € {0,1}:

lim sup P"(pp, # 1) = 0;

n—oo PeH;

2. Hy and Hi have disjoint closures in P(X).

The proofs are given below in Section 2.1. Throughout one can equivalently consider strong
consistency and weak consistency, by Theorem 1. Theorem 2 shows that the uniform consistency
of Theorem 4 can equivalently be stated as Type-I error control, either asymptotically, or for finite
samples. The uniform consistency of Theorem 6 can equivalently be stated as asymptotic Type-I
and Type-II error control. Similarly, it can be shown that the uniform consistency of Theorem 5 can
equivalently be stated as Type-I and Type-II error control, either asymptotically or for finite samples.

By swapping the roles of Hy and H; in Theorem 4, we obtain that H; is closed if and only if the
pair is consistently FP-testable with uniform error control under Hj.

The condition in Theorem 6 that Hy and H; have disjoint closures is (under the assumption of
relative compactness) equivalent to being metrically separated, that is, dgr(Ho, H1) > 0. Note that by
Prokhorov’s theorem, the relative compactness condition is equivalent to uniform tightness of the set
of probability measures in W. This compactness assumption is not necessary for uniformly consistent
FP-testability: one can uniformly consistently test whether the mean of a Gaussian with fixed variance
is smaller than 0 or larger than 1, and this space of hypotheses is not tight.

The topological condition of each theorem implies the topological condition of the previous theorem:
metric separation implies the hypotheses to be clopen in the subspace topology, which implies Hy to
be closed, which implies Hy and H; to be F, (since the weak topology is a separable metric topology).

These results are readily applicable to the example from the introduction, since the parameter space
[0, 1] with the Euclidean topology is homeomorphic to the set of Bernoulli distributions equipped with
the weak topology. The hypothesis H; in (1) is not F,, so there does not exist a consistent FP-test
for this problem. The hypotheses from (2) are both F, so there exists a consistent test, but no form
of uniform error control is possible since neither Hy nor H; is closed. In (3) Hy is closed, so there
exists a consistent FP-test with uniform error control under Hy. Both hypotheses of (4) are clopen
in the relative topology on W, so there exists a consistent FP-test with the type of error control as
in Theorem 5, but uniform consistency as in Theorem 6 is not feasible. In (5) the two hypotheses
are relatively compact and have disjoint closures in the ambient space, so there exists a uniformly
consistent test.

In general, these sufficient conditions for various types of testability are not constructive: the
tests of Theorems 3, 4 and 5 are constructed by expressing the hypotheses in terms of the subbasis
elements {P € W : P(A) > ¢} of the weak topology. For example, in Theorem 4 one might know that
H; is open without knowing an explicit representation in terms of the subbasis elements. However,
for the examples (1)—(4) these subbasis representations are easily derived, allowing us to give explicit
tests, following the constructions in the proofs. We leave this as an exercise to the reader. The test
of Theorem 6 requires the computation of the BL-distance between the empirical measure and the
hypotheses, which might be computationally intractable as well.

These sufficient conditions for FP-testability also imply binary testability with corresponding modes
of error control, by joining the suspension zone {y,, = 2} with either {¢,, = 0} or {¢, = 1}. In Theorem
3, merging the suspension zone with {¢,, = 0} or {¢, = 1} both give a consistent test. Actually,
the topological condition of Hy and H; being F; is equivalent to the existence of two binary testing
sequences: one with {¢, = 0} open, and one with {¢, = 1} open. This can rather straightforwardly
be deduced from the proof of Theorem 3. For the test of clause 2 of Theorem 4 it does not matter for
maintaining error control whether {y, = 2} is joined with {¢, = 0} or {¢,, = 1}, but for the test of
clause 1 the suspension zone must be joined with {¢;, = 0} to maintain the error control under Hy. It
can be shown that Hy being closed is equivalent to the existence of a binary testing sequence with
{¢n = 1} open and uniform error control under Hy. For Theorem 5 the FP-test cannot be converted
to a binary test while maintaining the same error control. Finally, for Theorem 6 the binary test can
be constructed both ways while maintaining uniform consistency.



Results similar to Theorems 3 — 6 exist in the literature. Theorem 3 generalises Dembo and
Peres (1994) (Theorem 2) who provide the similar characterisation that, under the assumption that
all measures in W have uniformly integrable densities, there exists a consistent binary test if and
only if the hypotheses are F,; in the weak topology. Genin and Kelly (2017) (Theorem 4.3) drop the
uniform integrability assumption (but the assumption of having densities remains), for which they
show that the F, condition is equivalent to the existence of a ternary testing sequence (¢, )nen With
P(O{en = 0}) = P(0{¢n = 1}) = 0 for all P € W. Ermakov (2017) (Theorem 4.4) considers the
topology of setwise convergence instead of the weak topology for which he shows — under the assumption
that W is contained in a o-compact set — that the F, condition is equivalent to the existence of a
binary testing sequence, without any regularity of the critical regions.

An analogue of Theorem 4 is also shown by Genin and Kelly (2017) (Theorem 4.1) under the
assumption of having densities, for binary tests with P(0{y, = 0}) =P(0{p, =1}) =0 for all P € W.
Ermakov (2017) (Theorem 4.3) shows that when Hp and H; are contained in respectively a compact
set and a o-compact set, consistent binary testability with uniform consistency under Hy is equivalent
to Hy being closed and H; being F, in the topology of setwise convergence.

Theorem 5 is also given by Genin (2018) (Theorem 3.2.3) under the assumption of having densities,
for ternary tests with P(0{yn, =0}) =P(0{¢pn =1}) =0for all P € W.

Theorem 6 is similar to Ermakov (2017) (Theorem 4.1), who shows that if W is contained in
a compact set in the topology of setwise convergence, then Hy and H; having disjoint closures is
equivalent to the existence of a consistent binary test. Note that compactness in the topology of setwise
convergence implies that the weak topology and the topology of setwise convergence coincide, so we
obtain weaker sufficient conditions for the existence of uniformly consistent tests.

2.1 Proofs

The proofs that the existence of certain tests imply certain topological conditions on the hypotheses
are stand-alone. There is however a dependency between the proofs that certain topological conditions
imply the existence of FP-tests with the desired properties. We first prove Theorem 4. From that one,
we can build under F; conditions consistent tests in Theorem 3, and under clopen conditions we can
build tests with the two-sided error control as required in Theorem 5. To prove Theorem 6, we use an
entirely different proof strategy using convergence of empirical measures.

2.1.1 Proof of Theorem 4

The main argument for the existence of a test with uniform error control is that if H; is open, we can
write it as a countable union of finite intersections of subbasis elements {IP € W : P(A) > ¢}. For each
disjoint pair of subbasis elements there exists a test with the required error control. The proofs largely
follow the structure of the proof of Genin and Kelly (2017), Theorem 4.1.

Lemma 1. Let W C P(X) be given, let A C X be open and let ¢ € [0,1]. For the hypotheses
Hy ={PeW:PA) <q} and Hl = {P € W : P(A) > ¢}, for every a > 0 there exists a strongly
consistent FP-testing sequence (¢n)nen with suppe g, > ey P*(¢n # 0) < a.

Proof. Let a > 0 be given, let Af/n := Ugeae B(a,1/n) be the 1/n-neighborhood of A¢, and define

0 if %Z?:l ]lAi/n(Xi) >1— q— tn;
SOn(Xl, 7Xn) =91 if %Z?:l ]lext(AT/n)<Xi) > q+ ty;

2 otherwise,

where t,, := \/ﬁ In(72n?/6a).



For P € Hy we have P(A) < ¢, so the fact that A{ In 2 A° and Hoeflding’s inequality gives

P*(pn # 0) =P" <:LZ]1A§/"(X1') <1 —q—tn> <Pp" (izn:lAc(Xi) <1- q—tn>

i=1 =1
1 ¢ 1 < (§1e
=P —E 14(X;) > t. | <P" 75:1 X)) > P(A) Lt | < e 20t —
<ni1 Al = at n) B (n i=1 AR = B n) =° wn?’

hence > 77 | P"(p, # 0) < a. Strong consistency under the null then follows from the Borel-Cantelli
lemma.

If P € Hy then P(A) > q. Since A=, ext(Ai/n), we have that P(ext(AS n)) 1 P(A). Therefore,
there is an M € N such that IP’(ext(Ai/M)) > ¢. Since ext(Af/ )2 ext(Af/M) for all n > M we have
for all these n that 1 ) ]Lext(Ag/n)(X ) > %Z?:l ]lext(Al/M)( i), which by the strong law of large
numbers converges almost surely to P(ext(A{ / 1)) > ¢ Combined with the fact that ¢, | 0 we almost
surely have that % > ]lext(A;/ y(Xi) > g+t for all sufficiently large n, so ¢, — 1 a.s.

To prove that {¢, = 0} is open, let for v € {0,1}" the set (Ai/ )Y C X" be the Cartesian product
of n sets, where the i-th set is Ai/ if v = 1, and X if 7, = 0. For example, v = (1,...,1,0) gives
(A1),)7 = Af), X .. x A], X X. Since Af, is open, so is (A7, )7, hence {¢n, = 0} = U{(45,,)"
v €{0,1}",|y| > n(1 — ¢ —t,)} is open as well. Since ext(AC/ ) is open, we have analogously that
{¢n = 1} is open as well. [ |

The following lemma shows that for pairs of hypotheses which are consistently testable with uniform
error control under the null, the alternative hypotheses enjoy a topological structure: they are closed
under countable unions and finite intersections. For convenience in proving Theorem 4, the result is
stated in terms of strong consistency and control of the sum over n of all errors, but also holds for
weak consistency and error control pointwise in n.

Lemma 2. Let {(Héj,Hij) : (i,5) € N2} be pairs of disjoint hypotheses such that for every pair
(Héj JH fj ) and every o'l > 0 there exists a strongly consistent FP-test @3 with SUDpe p, S P (i #
0) < a¥, then for the hypotheses Ho = (;2; Uj=, HY and Hy =2, Mo Hy 9 and any o > 0 there
exists a strongly consistent FP-test ¢ with suppep, > ooy P"(¢n # 0) < a.

Proof. Let a > 0 be given. For the hypotheses (HOJ ,H7), let ol be a strongly consistent FP-test with
S P #0) < /2% Let @, be the FP-test deﬁned by

n m;

{en=0}:=Ulwll =0}
1=175=1

(=1} = U N6l =)
i=1j5=1

{on =2} = &"\ ({¢n = 0} U {p, = 1}),

then ¢, has uniform error control under the null: if P € Hy, then for every i € N there is a j; < m;
such that P € Héjl, and since {p, # 0} = =, 2 {gp #0} C U2 1{g0”’ # 0} we have

D P (pn #0) < P (UR{p #0}) < ZZP" (@i #0) <
n=1 n=1 n=1i=1

The Borel-Cantelli lemma then gives strong consistency under Hy.
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For every P € Hj there is an i € N such that P € (X} H ij . Because of the inclusion ﬂ?:il{gpﬁlj =
1} C {¢n = 1} and the Fréchet inequality® we have for n > i that

P (lim inf{p, = 1}) = P> (lim inf{ey, = 1})

> P (liminf N7, {ol = 1}) > > PP(liminf{e¥ =1}) —m; +1=1,
j=1

S0 @, is strongly consistent. |
We are now able to prove Theorem 4:

Proof.

1 = 3 By Theorem 2, 1 is equivalent to the existence (for every o > 0) of a weakly consistent FP-test
with suppep, P"(pn = 1) < « for all n. If Hy is not closed, then there is a Q € H; and a sequence

{P,}men in Hg such that P,,, % Q. The map P~ P" is continuous (Billingsley, 1999, Theorem 2.8)
hence P, = Q™. Let ¢, be an FP-test with suppe g, P"(¢, = 1) < a for all n, then {, = 1} is open
so by the Portmanteau theorem we have Q" (¢, = 1) < liminf,, P} (¢, = 1) < o, and hence ¢,, cannot
be weakly consistent at Q.

3 = 2 If H; is open, then we can write Hy and H; as

oo m; oo m;

HO:ﬂU{PEW:P(Aij)SQij} H1:Uﬂ{P€WIP(Aij)>qij}

=1j=1 i=1j=1

for A;j € X open and g;; € [0,1]. By Lemma 1, for each of these pairs of hypotheses Héj ={PeW:
P(A;ij) < gij} and Hfj = {P € W : P(A;;) > gij}, for each o > 0 there exists a consistent FP-test
0¥ with SUPpeHy D omet P (0 +0) < o, and by Lemma 2 this implies that for Hy, H there exists
a strongly consistent FP-test @, with suppep, > oo P"(¢n # 0) < a. The result now follows from
Theorem 2.

2 = 1 Immediate. [ |

2.1.2 Proof of Theorem 3
We now show that consistent FP-testability is equivalent to the hypotheses being F, in W.

Proof.

1 = 2 Let ¢, be a weakly consistent FP-test. For i € {0,1} we have P € H; if and only if there is
an m € N such that P" (¢, = i) > 2/3 for all n > m, hence we can write

Hy = fj ﬁ{PeW;P"(sonzl)gm}

m=1n=m

H, = G ﬁ{PeW:P”(canO)gl/B}.

m=1n=m

Since sets of the form {P € W : P(A) > ¢} with A C X open are open in the weak topology on W, and
both critical regions {y, = 0} and {y, = 1} are open, the set {P € W : P"(¢,, = i) < 1/3} is closed,
so Hy and H; are F, sets in the weak topology.

2 = 1 If Hy and H; are disjoint Fy, sets, then we can write Hy = |J,>_, Hj* and H, = J,,_, H{" for
closed sets H* and H{".

By Theorem 4, there exists for every m € N, for the pair of hypotheses (HJ", W \ H{") a strongly
consistent FP-test ¢, where ¢, = 0 corresponds to H{* and where ¢, = 1 corresponds to W'\ H{".

3For measurable sets Ay, ..., A, we have P(Nf=1Ad) > >0 P(A) —n+ 1.
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Similarly, for the pair of hypotheses (W \ Hi", H{") there exists a strongly consistent FP-test ¢7",
where 7", = 0 corresponds to W \ H{" and ¢, = 1 corresponds to H{". Define the FP-test ¢, such
that

m=1 k=1

{on =1} = [ J el =1} [ {ehn =1}
m=1 k=1
{on =2} ="\ ({pn =0t U {pn =1}).

For P € H; there is a m € N such that P € H}", and note that P ¢ Hf_l- for all £ € N, so we obtain
P*(liminf{y, = i}) = P (liminf{p, =i})
n n>m

> P (lim inf{pf, = i} iy {o] i, = i})

m
> PP (liminf{e]), =i} n{f ;, =i}) —m+1>1
k=1 "
by the Fréchet inequality and the consistency of all ;" and go’f_i,n. |

2.1.3 Proof of Theorem 5

Having Theorem 4 at our disposal, we obtain the following characterisation of testability in terms of
both hypotheses being clopen in W.

Proof.

1 = 2 By Theorem 4, if Hy is not closed in W then there is no test with

lim sup P"(p, =1)=0

n—oo PeH,

and if H; is not closed in W then there is no test with

lim sup P"(p, = 0) = 0.

n—oo PeH;

2 = 1 By Theorem 4 there exists for each i € {0,1} a strongly consistent FP-tests ¢!, such that
lim, suppe 7, P" (¢}, = 1 — i) = 0. By defining the FP-test

{on =0} := {on = 0} N {py, = 0}
{on=1}={op=1}N{p, =1}
{on =2} ="\ ({on =0} U{pn = 1}),

we have for both i € {0,1} that lim, suppe, P"(¢on = 1 — i) < limy, suppepy, P"(¢h, =1—1)=0. W
2.1.4 Proof of Theorem 6

Proof.

1 = 2 Let ¢, be a uniformly consistent FP-test with {,,, = 0} and {y,, = 1} having disjoint closures,
so for every € > 0 there is a N > 0 such that infpcy, P(pp, = i) > 1 —¢ for alln > N, for i =0
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and ¢ = 1. Then for any limit point Q of Hy and H; there are sequences P?n and IE”}ﬂ in Hyp and H;
respectively converging to Q. Since {¢,, = 0} and {¢,, = 1} have disjoint closures, we have

12Q({ea=0}) +Q({v. = 0})
> limsup 7, ({son = 0}> +limsup B, ({(Pn = 1})
> limsup Py, ({n = 0}) + limsup Py, ({0 = 1})
2 P%EHIEOP({‘PTL =0}) + IP’ienI—fll P({en=1})

2(1 - 6)7

v

so we reach a contradiction.
2 = 1 Let Hy, H; have disjoint closures, then by relative compactness, we have dpr(Hy, H1) > 0.
Let v < dpr(Ho, H1)/2, let PT denote the empirical measure at z € A", and let
0 ifdpr(PZ, Hy) <
on(x) =491 ifdp(PZ, Hy) <
2 otherwise,

then by weak continuity of z — P%, the sets {¢, = 0} and {¢,, = 1} are open with disjoint closures.
By tightness of Hy, for every € > 0 there is a compact K C X such that P(X \ K) < e. This gives

dpr(Py,P) = sup{‘/fd}?ﬁ - /fd]P" i fe BL}
Ssup{‘/ fdﬁ»g—/ fd]P‘ :feBL}+PfL(X\K)+P(X\K),
K K

o E[dp(P%,P)] < E[sup{| [ fdPL — [, fdP|: f € BL}] + 2. Since BL is equicontinuous and
bounded, by Arzela-Ascoli it is precompact in the topology of uniform convergence on compacta.
Restricted to K, this gives precompactness of BL(K;R) in the sup-norm, hence for every n > 0 there
is a NV, and functions f1, ..., fn, € BL(K;R) such that for every f € BL(K;R), || f — fi|| <7 for some
t. The triangle inequality then gives

Sup{’/ fdpy — deP" fe BL} < max{’/ fidPy — / fid}P” 1i= 1,...,]\7,7} + 2n.
K

By Jensen’s inequality applied to the square, we obtain

Wi 1 -
EH /K fidPE — /K fidPH _E n;ﬂmxpfxxj)l&p[wi]

n

1 1
< |Var n;]lK(Xj)fi(Xj) S%»

so by combing these intermediate result we obtain

N,
p [der (P, P)] < 7% + 29 + 2¢.

This implies uniform consistency of the test under Hy as follows: we have dpr(P%, Hy) < dpr(PZ,P) +
dpr(P, Ho) = dpr(PZ,P), and we can pick £, and N > 0 such that Ep [dpr(P),P)] < /2 for all
n > N, and so
P(pn # 0) = P(dpL(Py, Ho) > 7) < P(dpL(Py,P) =)
:IP’(dBL(IP’ ,P) — Ep [dp (P, ,P)] > v — Ep [dpL(P;,P)])
P(dpL(Py,P) — Ep [dpr(Py . P)] = 7/2).
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Since for x = (z1,...,x,) and any ¢ and z;, € X we have with 2/ = (z1,...,2},...,x,) the bound
dpr(P%,P) — dpp (P }P’)‘ < 2/n, McDiarmids inequality (Van Der Vaart and Wellner, 2023, Proposi-
tion 2.15.3) gives

sup P(p, # 0) < sup P(dpr(Py,P) — Ep [dBL(]P’ff,P)] >v/2) < exp(—nzfyz/S).
PeHy PeHy

3 The hardness of conditional independence testing

We now turn to applications of the preceding results to conditional independence testing. Lauritzen
(2024) shows that conditional independence is closed under limits in the total variation metric. However,

in general, weak convergence does not preserve conditional independence: for a weakly convergent
sequence P, (X,Y, Z) 5 P(X,Y, Z) with X lp, Y |Z for all n € N, we might have X fpY | Z.

Ezample 1 (Lauritzen, 1996, Example 3.11). Consider a trivariate Gaussian P, (X,Y, Z) with mean
zero, and (conditional) covariance matrices given by

1 11

T 3 0
»no— ? } @ and E}le = ((2) ;> ,

NN )

so we have conditional independence X ILp, Y | Z. Since P,(X,Y,Z) % P(X,Y, Z) with P(X,Y, Z) a
degenerate multivariate Gaussian distribution with (conditional) covariance matrices

1
} z 0 1 1
Y= 5 1 0 and EXY|Z: (1 %),
0 0 0 2

we have X fp Y | Z, so conditional independence is not maintained under weak limits. Other examples
can be found in Barbie and Gupta (2014) and Saldi and Yiiksel (2022).

Combining this example with Theorem 4, we immediately obtain that for real-valued random
variables, conditional independence is not consistently FP-testable with uniform error control under
the null. We strengthen this result by allowing for rather general sample spaces, and showing that
consistent FP-tests don’t exist for conditional independence. We use the following lemmas:

Lemma 3. Let X,), Z be complete separable metric spaces with Z perfect* then Hy := {P: X 1lpY | Z}
is dense in P(X x Y x Z).

Proof. Probability measures of the form P =Y | a;d, with k; = (24, vi,2;) € X x Y x Z are dense
in P(X x Y x Z) (Bogachev, 2007, Example 8.1.6). If there are ¢ # j such that z; = z;, then for
every ¢ > 0 there is a 2 € Z such that 2} # z; for all i = 1,...,n and d(2;,2;) < €/a;. Defining
K = (v,y5,2;) and P’ :== 370 a;dk, + a,j(dk; — 0y;) we have that dpr(P,P’) < e. Hence, convex
combinations of point-masses with distinct Z-coordinates are dense in P(X x ) x Z). For any such P’

and any z; in the support of P'(Z) we have P'(X,Y | Z = z;) = 6(a, 4,) = 02,0y, 50 X Lp Y | Z. [ ]

Lemma 4. Let X,), Z be complete separable metric spaces, then Hy == {P: X Y pY | Z} is dense in
PX xYxZ2).

Proof. In Boeken et al. (2025), Corollary 1 it is shown that H; := {P : X fpY | Z} is dense in
P(X x Y x Z) with respect to the total variation metric. Since dgy < dpy, the assertion holds. W

Theorem 7. Let X,Y,Z be complete separable metric spaces with Z perfect, then the hypotheses
Hy:={P: X UpY|Z} and Hy :={P: X fpY | Z} are not consistently FP-testable.

4That is, Z has no isolated points. Since Z is also Polish, it is uncountable (Kechris, 1995, Corollary 6.3).
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Proof. Since P(X x Y x Z) equipped with the weak topology is complete, the Baire category theorem
implies that it is not meager in itself. By Lemmas 3 and 4 we have that Hy and H; are dense. If Hy
and H; are both Fy, then they are both G5 (i.e. a countable union of open sets). The complement of a
dense Gy set is meager, implying that Hy and H; are meager. The space W = Hy U H; would then be
meager as well giving a contradiction, so Hy and H; cannot both be F,. From Theorem 3 we conclude
that Hy, H; are not consistently FP-testable. |

The preceding result is for example applicable when X, Y, Z take values in (complete separable
metric) function spaces such as C([0,1],R?) (Manten et al., 2024), L?(]0,1],R?) (Lundborg et al.,
2022) or the Skorohod space D([0, 1], R?) (Boeken and Mooij, 2024), for example when they represent
measurements of continuous-time stochastic processes.

4 Weak closedness of conditional independence

Having established that conditional independence is generally not FP-testable, we will now search for
conditions under which conditional independence is closed or F,, implying the existence of a consistent
FP-test. In particular, we will show that if P,,(X,Y, Z) = P(X,Y, Z) and the conditional distributions
z+— P, (X | Z = z) are uniformly Lipschitz then conditional independence X 1L Y | Z is maintained in
the limit. First, we formalise what is meant with a conditional distribution being Lipschitz.

A Markov kernel P(X | Z) is a measurable map Z — P(X).5 For Markov kernels P(X | Y),P(Y | Z),
their product is defined as the Markov kernel

PX|Y)®PY|Z): Z—PX xY), 2+ (Db—)/DdIP’(x\y)dIP’(y\zo

where D € B(X x )). If X is a separable complete metric space, then for a given joint distribution
P(X, Z) there exists a Markov kernel (a version of the conditional distribution) P(X | Z) such that
P(X,Z)=P(X|Z) ® P(Z). This Markov kernel is P(Z)-almost everywhere uniquely defined.

Our main focus is on distributions P(X,Y, Z) for which there exists a version of the conditional
distribution P(X | Z) such that

P(X’Z):(Z,dz)—)(P(X),dBL), Z'—)]P)(X‘Zzz)
is an L-Lipschitz map, i.e.
dpr(P(X|Z =2),P(X|Z=2")) < L-dz(z,7)

for all 2,2/ € Z, where dz denotes the metric on Z — we will always take this version of the
conditional distribution. It follows from the definitions that L-Lipschitz continuity of the Markov
kernel z — P(X|Z = z) is equivalent to L-Lipschitz continuity of the conditional expectation
2= E[f(X)|Z = 2] for all f € BL(X;R).

First, we have that the Lipschitz assumption is closed in the weak topology:

Theorem 8. Let X, Z be separable metric spaces with Z complete. The set {P € P(X x 2Z) :
P(X | Z) is L-Lipschitz} is closed in the weak topology.

Further, this Lipschitz assumption on the conditional P(X | Z) or P(Y | Z) implies that conditional
independence is closed in the weak topology.

Theorem 9. Let X,), Z be separable metric spaces with Z complete. If P, (X,Y,Z) =% P(X,Y, Z)
where X Lp Y |Z and P, (X | Z) is L-Lipschitz for alln € N, then X 1LpY | Z.

The proofs of Theorems 8 and 9 are given in Appendix A.

SHere, P(X) is equipped with the Borel o-algebra generated by the weak topology, which coincides with the smallest
o-algebra that makes for all D € B(X) the evaluation map P — P(X € D) measurable (Ghosal and Van Der Vaart, 2017,
Proposition A.5). This definition of a Markov kernel is equivalent to the common definition that for all D € B(X) the
map z — P(X € D|Z = z) is measurable, and for every z € Z the map D — P(X € D|Z = z) is a probability measure.
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4.1 Sufficient conditions for Lipschitz Markov kernels

In Section 5 we will use this Lipschitz assumption for conditional independence testing. To make it
better accessible, we investigate sufficient conditions for this Lipschitz assumption to hold.

Scheffé’s theorem implies that if a conditional density is continuous in its conditioning variable,
so p(x | zn) — p(x | 2) for some sequence z, — z, then P(X | Z = z,) = P(X | Z = z). The following
proposition contains a Lipschitz-continuity analogue of this result. We also consider the composition of
Markov kernels P(X |Y)oP(Y | Z) : Z — P(X), defined as z — mx(P(X |Y) @ P(Y | Z = z)) (where
mx denotes the projection 7y (P(X,Y | Z = z)) = P(X | Z = z)), which is of particular importance in
the context of graphical models like Bayesian networks. We show that the composition of Lipschitz
Markov kernels behaves similar to the composition of Lipschitz functions.

Proposition 1. Lipschitz Markov kernels have the following properties:

a) If P(X | Z) has a density p(x | z) with respect to a finite measure Q(X € X') < M < oo such that
z > p(x | 2) is L-Lipschitz, then P(X | Z) is LM -Lipschitz.

b) If Z is discrete then P(X | Z) is 2-Lipschitz.

c) Ify—»P(X|Y =vy) and z — P(Y | Z = 2) are L-Lipschitz and M -Lipschitz respectively, then
2= PX[Z=2)=P(X |Y)oP(Y|Z = z) is max{1, L} - M-Lipschitz.

d) If z—P(X € D|Z = z) is L-Lipschitz for all D € B(X), then z — P(X | Z = z) is L-Lipschitz
as well.

e) IfP(X,Z) ~ N(u,X) is multivariate Gaussian, then P(X | Z) has Lipschitz constant || Sx 7%, ||op-°
Proof.

a) For any f € BL(X;R) and z,2/ € Z we have [E[f(X)|z] —E[f(X)|Z] < [y|p(z]z) —
p(z]2)|dQ(z) < Ldz(z,2")Q(X) < LMdz(z,2').

b) For any f € BL(X;R) and 2,2 € Z we have |[ f(z)d(P(z|2) — P(z|2'))| < 21{z = 2/} =
2dz(z, 7).

c) For any f € BL(X;R) we have that y — mE[f(X)]Y = y] is in BL(Y;R), hence
|JEF(X) Y = yld(P(y] 2) — P(y|2))| < max{1, L}dpr(P(Y | 2), B(Y | 2)) < max{1, L}Mdz(z,2").

d) This follows directly from the definition of the total variation distance, which upper-bounds the
bounded Lipschitz metric.

e) Given P(X,Z) ~ N(u,X), the conditional P(X | Z = z) is Gaussian with mean px|z(2) =

MX‘i-EXZE}lZ(Z—MZ) and covariance matrix Xy = ZXX—EXZE;ZEZX. Let U ~ N(0, Yx|z)-
For any f € BL(X;R) we have

E[f(X)|Z = 2] = E[f(X)| Z = 2]| = |[E[f(ux | 2(2) + U)] = E[f(ux | z(z") + U)]]
<E[f(ux|z(z) +U) = f(ux|z(z") + U)]
< lux2(2) = px ) z(2)]
< |=x227zllopllz = ]I =

One readily verifies that the conditional distributions P,,(X | Z) and P, (Y | Z) from Example 1 are
v/n/2-Lipschitz. In particular, no L-Lipschitz assumption holds for these sequences, so the fact that
conditional independence is not maintained in the limit hints at the sharpness of this condition in
Theorem 9.

®Here, || - |Jop denotes the operator norm.
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4.2 'Weak closedness of conditional independence via total variation

We can also take a completely different approach to finding sufficient conditions under which conditional
independence is weakly closed, which does not use uniform continuity of the Markov kernels. Namely,
by Lauritzen (2024), conditional independence is closed in total variation. For sets of probability
measures for which the total variation topology and weak topology coincide, we then immediately
obtain that conditional independence is weakly closed. To this end, we consider classes of measures
with well-behaved densities. Let u be a o-finite Borel measure on standard Borel spaces Ay and let
W,, be any class of distributions with a density with respect to p which are uniformly equicontinuous
and uniformly bounded by some envelope function, that is, for every € > 0 there is a § > 0 such
that |z — y| < 0 implies |p(z) — p(y)| < € for all densities p, and there is a M : X — R such that
p(z) < M(x) for all p. By generalising Boos (1985) (Lemma 1) to arbitrary metric spaces we have that
the total variation topology and weak topology coincide on W,,.

Theorem 10. Let X,), Z be metric spaces. If Pp(X,Y,Z) 5 P(X,Y, Z) with P, € W, for alln € N,
then P, (X,Y, Z) B P(X.,Y, Z).

The proof is found in Appendix A. By Lauritzen (2024), this implies the following result.

Theorem 11. Let X, Y, Z be metric spaces. If Po(X,Y,Z) 5 P(X,Y,Z) with X Ip, Y |Z and
P, € W, for alln € N, then X 1LpY | Z.

Another approach would be to consider sufficiently regular exponential family, for which by
Barndorff-Nielsen (2014), Section 8.1, Theorem 8.3, the parameter space with the Euclidean topology
is homeomorphic to the set of probability measures with the weak topology. By Scheffé’s theorem, this
topology then coincides with the total variation topology.

Note that weak convergence plus the Lipschitz assumption does not imply total variation convergence
(for example, let P,,(X) = 01/, and P,,(Y|X = x) = §,), so Theorem 9 cannot be proven by invoking
Lauritzen (2024).

4.3 Related literature

As sufficient condition for conditional independence to be closed in the weak topology, Jordan (1977)
and Hellwig (1996) considered probability measures P with z — P(X | Z = z) continuous, but Barbie
and Gupta (2014) gave a counterexample. They show that conditional independence is closed in
the topology of information (see also Backhoff-Veraguas et al. (2020)), and show that this topology
coincides with the weak topology under similar uniform equicontinuity conditions as Theorem 9.

5 Sufficient conditions for conditional independence testing

Having the topological sufficient conditions for testability from Section 2 and the sufficient conditions
for conditional independence to be weakly closed from Section 4 at our disposal, we can relatively
easily prove the existence of conditional independence tests under various settings.

To this end, let W, C P(X x Y x Z) be the set of measures such that P(X | Z) is L-Lipschitz and
let Woo := UrenWrp, i.e. the set of measures such that P(X | Z) is Lipschitz. Also, recall the definition
of W, from Section 4.2.

Theorem 12. Let X,), Z be complete separable metric spaces, let W C P(X x Y x Z) and consider
the hypotheses Hy :={P e W : X IpY |Z} and Hy :={P e W : X JpY | Z}.

a) If W = Wy, then there exists a strongly consistent FP-test with uniform error control under Hy.

b) If Z is discrete and W = P(X x Y x Z), then there exists a strongly consistent FP-test with
uniform error control under Hy.

c) If W =W, then there exists a strongly consistent FP-test with uniform error control under Hy.

17



d) If W = Wy, and we consider the alternative hypothesis
Hi ={PeW,:dpt(P(X|Z2)@P(Y,Z2),P(X,Y,Z)) >¢c}
for given € > 0, then there exists a uniformly consistent FP-test as specified in Theorem 6.
e) If W = W, then there exists a strongly consistent FP-test.

Proof.

a) By Theorem 9 we have that Hy is closed in P(X x Y x Z), hence also in Wy,. The result follows
from Theorem 4.

b) If Z is discrete, then by Proposition 1.b) we have that Wy = P(X x ) x Z), so the result follows
from part a).

c) By Theorem 11, Hy is closed in P(X x Y x Z), hence also in W, so the result follows from
Theorem 4.

d) Another way of phrasing Theorem 9 is that the map P(X,Y,Z) — P(X | Z) @ P(Y, Z) from W,
to P(X x Y x Z) is continuous. Hence, the map

f WL PXxYxZ), PX,)Y,Z)—dp(P(X|2)2P(Y,Z),P(X,Y,Z))

is continuous as well, so Hy = f~1({0}) and H{ = f~([¢, 1]) are closed in W. The result follows
from Theorem 5.

e) The set Wy, is closed in P(X x Y x Z) hence also in W, and writing H) = {P € P(X x Y x
Z): X 1pY|Z} we have that Hj N Wy is closed in Wy, hence also in W, which gives that
Ho = Uren HyNWL is Fy in W, Similarly, writing Hf = {P € P(X x Y x 2): X JpY | Z} we
have that H{NW7, is open in Wy, hence F,, in W, hence also F,, in W, hence Hy = Uren H{inWp,
is I, in W, so the result follows from Theorem 3. m

Note that by symmetry, in the definition of W, as considered in Theorem 12, one can also let all
P(Y | Z) be L-Lipschitz.

Remark 1. Note that the hypotheses Hy := Wy, and Hy := P(X x Y x Z) \ W, are also FP-testable,
since Wy, is closed by Theorem 8. Hence, these regularity assumptions for conditional independence

testing are themselves testable. An assumption-free consistent FP-test with uniform error control under
Hyj therefore exists for the hypotheses Hy := {P € Wi : X LpY | Z} and Hy := P(X x )Y x Z) \ Hy.

5.1 Related literature

Warren (2021) proposes a conditional independence test based on binning the space Z, and proves
that it is pointwise asymptotically valid under the null and consistent under the alternative, under
the assumption that the distributions P(X,Y | Z),P(X | Z) and P(Y | Z) are L-Lipschitz maps from a
compact space Z to the space of probability measures equipped with the p-Wasserstein distance W,.
This assumption is close to the assumption that we make, since we have dpr,(Pg,P1) < Wy,(Py, Py),
with equality dgr,(Po,P1) = W1(Py,Py) if Py and P; have bounded support (Bogachev, 2007, Theorem
8.10.45). Theorem 12.a) shows that, under the assumptions of Warren (2021), there even exists a test
which is valid at every sample size n € N, and one requires only P(X | Z) or P(Y | Z) to be L-Lipschitz.

Neykov et al. (2021) propose a conditional independence test which obtains a minimax-optimal
rate, under the assumption that X,Y, Z are compactly supported, have densities, and P(X | Z) and
P(Y | Z) are L-Lipschitz maps from Z to the space of probability measures equipped with the total
variation metric.

Gyorfi and Walk (2012) propose a conditional independence test and aim at proving its strong
consistency without any regularity conditions on Hy and Hj, but Neykov et al. (2021) point out a
mistake in their proof. Dai and Song (2025) propose a consistent test, under the assumption of a smooth
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parametric model. For data beyond real-valued random variables, there is some work about conditional
independence testing where X,Y, Z take values in function spaces, representing measurements of
continuous time stochastic processes. Lundborg et al. (2022) propose an asymptotically valid test
under the assumption that E[X | Z] and E[Y | Z] can be estimated sufficiently well, and Manten et al.
(2024) propose a weakly consistent test under the assumption that E[X | Z],E[Y | Z] and E[(X,Y) | Z]
can be estimated with certain kernel methods.

None of these tests take any regularity of the critical region into account. For example, the minimax
rate of Neykov et al. (2021) is computed over all tests with measurable critical regions. Hence, tests
are considered which can never be implemented when one has finite-precision measurements.

6 Discussion

This work establishes a precise topological framework for understanding the testability of statistical
hypotheses under the constraint of finite-precision measurements. Our results reveal that the feasibility
of constructing consistent tests with controlled error — particularly in nonparametric settings — can
be characterized entirely in terms of the topological properties (F,, closed, clopen, or disjoint closures)
of the null and alternative hyptheses in the weak topology on the space of probability measures. An
important implication is the non-testability of conditional independence hypotheses in general: because
both the null and alternative hypotheses are dense and their union is a Polish space, no consistent
FP-test exists without additional assumptions. This generalizes and strengthens prior results in the
literature, and underscores that conditional independence — while foundational in causal inference
and graphical models — is not a testable property without smoothness or structural constraints. By
imposing a Lipschitz continuity assumption on the conditional distributions, we recover testability. We
show that Lipschitz conditions ensure closedness in the weak topology, enabling the construction of
tests with uniform error control under Hy. This yields sufficient conditions under which conditional
independence becomes statistically testable. In particular, we prove that this regularity assumption
of having Lipschitz conditional distributions is itself testable, allowing for a recursive framework for
assessing the testability of higher-order statistical claims.

Despite these contributions, several important questions remain open. While the established
topological conditions are necessary and sufficient, they are not always constructive: given an open Hj,
one must find open A4;; C X and g;; € [0, 1] such that Hy = U2, ;2 {P : P(4;;) > g5} in order to
construct a test, and this representation may be difficult to identify in practice. It would be interesting
to find such an explicit representation for conditional independence. An interesting avenue for future
research would be to allow for dependent data sampling: by Theorem 2, uniform error control under H
can be interpreted as suppe g, P*°(3n : ¢, # 0) < «, which is closely related to anytime-valid p-values
and e-values (Griinwald et al., 2024), and topological characterisations of the existence of p/e-values
would be of significant interest. It is plausible that analogous topological criteria govern the possibility
of valid online or interactive hypothesis testing in complex models. Also, Theorem 6 curretly employs
a compactness assumptions which can be loosened. It remains an open question whether there exists
a consistent FP-test for conditional independence if one merely assumes that the distribution has a
density. Finally, from Example 1 it seems that some kind of equicontinuity of P(X | Z) or P(Y | Z) is
necessary for conditional independence testing with uniform error control under Hy. Finding these
necessary conditions would be of great interest, for example for constraint-based causal discovery.

In summary, our results offer a unified topological perspective on the fundamental limits of
statistical inference under measurement constraints. They resolve open problems around the testability
of nonparametric hypotheses, while opening avenues for further exploration in both theoretical and
applied statistics.

A  Proofs of results in Section 4

Lemma 5. Let X', Y, Z be separable metric spaces. Let Po(Y, Z) and P1(Y, Z) be given, and let P(X | Z)
be an L-Lipschitz Markov kernel, then

dpr(P(X | Z2) @ Po(Y, Z),P(X | Z) @ P1(Y, Z)) < max{1, L}dpL(Po(Y, Z),P1(Y, Z)).
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Proof. Considering the product metric dyxyxz = dx +dy +dz, for any f(z,y,2) € BL(X x Y x Z;R)
we have that gf(y, 2) := m Sy f(x,y,2)dP(x| 2) is in BL(Y x Z;R), so we get

' / £(,y, 2)dP(x | 2)dPo(y, ) / £, 2)AP(z | 2)dPy (y, 2)

— max{1, L} \ o128~ [ 0500 2)P15.2)
< max{1, L}dgL(Po(Y, Z), P\(Y, 7).
[ |

Lemma 6. Let X', ), Z be separable metric spaces, with Z complete. If Pp(X | Z) — P(X | Z) uniformly
on compacta, then for any given P(Y, Z) we have

dpr(Pn(X | 2) @ P(Y, 2), P(X | Z) @ P(Y, Z)) — 0.

Proof. For any f(z,y,z) € BL(X x Y x Z;R) we have that z — f(x,y, z) € BL(X;R), so

'/f(way,Z)dIP’n(@"!Z) —/f(:r,y,z)dp(w!Z) < dpr(Pn(X | 2), P(X | 2)).

Since Z is separable and complete, the measure P(Z) is tight, so for every € > 0 there exists a compact
K. C Z such that P(Z ¢ K.) <e. Since dpy, < 2, we have

‘ / £y, 2)AP (x| 2)AP(y, 2)— / f(@.y, 2)AP(z | 2)dP(y, 2)

< / dpr(Pa(X | 2), P(X | 2))dP(2)

< sup dp(Pn(X[2),P(X | 2)) + 2¢.
z€K.

Since P,,(X | Z) — P(X | Z) uniformly on compacta we get the result. [ |

Lemma 7. Let X, Z be separable metric spaces with Z complete. If Pp(X,Z) 5 P(X, Z) and P,(X | Z)
is L-Lipschitz for all n € N, there is a subsequence ny such that P, (X | Z) = P(X | Z) uniformly on
compacta.

Proof. By Ascoli’s theorem (Munkres, 2014, Theorem 47.1) there exists a subsequence n; and a
continuous Markov kernel Q(X | Z) such that P, (X | Z) — Q(X | Z) uniformly on compacta. Then
we have

dp(P(X | Z) @ P(2),QX | Z2) @ P(2)) < dpL(P(X | Z) @ P(Z),Pn, (X | Z) ® Py, (Z))
+dpr(Pr (X | Z) @ oy (2), Py, (X | Z) © P(2))
+dpr (P (X | 2) ©P(2), QX | Z) @ P(Z2)).
The first term is equal to dpr(P(X, Z),Py,, (X, Z)) and by Lemma 5 the second term is bounded by

max{1l, L}dp(P(Z),P,,(Z)), which both go to zero. The last term converges to zero by Lemma 6,
hence we obtain P(X | Z) = Q(X | Z), P(Z)-almost surely. [ |

Theorem 8. Let X, Z be separable metric spaces with Z complete. The set {P € P(X x Z) :
P(X | Z) is L-Lipschitz} is closed in the weak topology.

Proof. Note that if P,(X |Z) is L-Lipschitz for all n € N and P, (X |Z = 2) 3 P(X|Z = 2)
for all z € Z, then P(X | Z) is L-Lipschitz as well. By Lemma 7 we get that {P € P(X x Z) :
P(X | Z) is L-Lipschitz} is closed in the weak topology. [ |
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Theorem 9. Let X,), Z be separable metric spaces with Z complete. If P, (X,Y,Z) % P(X,Y, Z)
where X Lp Y |Z and P, (X | Z) is L-Lipschitz for alln € N, then X 1pY | Z.

Proof. By Lemma 7, there is a subsequence ny, such that P, (X | Z) — P(X | Z) uniformly on compacts.
When writing

APy (X | Z) 0 Py (1, 2), P(X | Z) @ P(Y, 2))
< dBL(]Pnk(X ‘ Z) ®Pnk(Y7 Z)7Pnk(X ’ Z) ®P(Y7 Z))
+ dpr (P, (X | 2) ® P(Y, 2),P(X | Z) @ P(Y, Z))

the first term is bounded by max{1, L}dpr(P,, (Y, Z),P(Y, Z)) by Lemma 5 and hence converges to
zero, and the second term converges to zero by Lemma 6, which gives P(X,Y, Z) = limy P, (X, Y, Z) =
limy Py, (X | Z) @ Py (Y, Z) = P(X | Z) ® P(Y, Z), which is the desired result. n

Theorem 10. Let X, Y, Z be metric spaces. If Po(X,Y,Z) 5 P(X,Y, Z) with P, € W, for alln € N,
then Po(X,Y, 2) B P(X,Y, Z).

Proof. Let P, % P weakly with P,, € W, for all n € N. By Ascoli’s theorem (Munkres, 2014, Theorem
47.1), the class of uniformly bounded and uniformly equicontinuous densities is relatively compact in
the topology of uniform convergence on compacta. In particular, for any subsequence n’ there is a
further subsequence n” and a p* : X x ) x Z — [0,00) such that p,» — p* uniformly on compacta.
This implies that p* integrates to 1, has modulus of continuity w and is uniformly bounded by M, and
hence P* € W,,. By Scheffe (1947) we then have weak convergence P, 2 P*. The weak convergence
P,, = P also implies convergence of the subsequence P,» — P, and thus p = p* p-a.e. The p-a.e.
convergence p,» — p implies convergence p, — p as well (otherwise there exists a subsequence n’ with
|pnr —p| > € on some set with positive y-measure, which contradicts the existence of a convergent further

subsequence), which implies total variation convergence PP, 3 P, again by Scheffé’s Theorem. ]
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