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About me

’14 - ’17 BSc. Business Analytics (VU)

’18 - ’20 MSc. Mathematics (UvA)

’21 - ’... PhD Causality and Mathematical Statistics/ML/AI/...
▶ Supervised by Prof. Dr. Joris Mooij (UvA)
▶ Co-supervised by Dr. Onno Zoeter

(Mercury Machine Learning Lab, Booking.com)
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Credits

This presentation is heavily inspired by:

▶ Joris’ inaugural lecture [Mooij, 2023];

▶ the MasterMath Causality course;

▶ Judea Pearl and Dana Mackenzie’s The Book of Why [Pearl and Mackenzie, 2018].
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Causality in the media

Business insider:
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Causality in the media

The Guardian:
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Causality: early history

David Hume (1740):

Thus we remember to have seen that species of object we call
flame, and to have felt that species of sensation we call heat.
We likewise call to mind their constant conjunction in all past
instances. Without any farther ceremony, we call the one cause
and the other effect, and infer the existence of the one from that
of the other.

Karl Pearson (1892):

Beyond such discarded fundamentals as ‘matter’ and ‘force’ lies
still another fetish amidst the inscrutable arcana of even modern
science, namely, the category of cause and effect.

Pearson introduced the correlation coefficient. To him, the slippery concepts of cause and
effect seemed outdated and unscientific, compared to the mathematically clear and precise
concept of a correlation coefficient.
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Causality and statistics

Constructive timeline:

▶ Wright [1921]: Causal genetics model for guinea pigs (discredited by Pearson)

▶ Fisher [1925]: Influential advocacy of randomized controlled trials

▶ Rubin [1974]: Influential mathematical formulation of a causal statistical model

▶ Dawid [1979]: Proposed the statistical notion of conditional independence

▶ Robins and Morgenstern [1987]: Estimating causal effects in epidemiology (took 4
years to get published)

▶ Pearl [1988]: Graphical representation of causal models

▶ Glymour et al. [1987]: Learning causal structure (graphs) from observational data.
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Causal Machine Learning: a hype
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Causal Machine Learning: a hype

▶ ‘Neural Causal Models’

▶ ‘Causal Regression Trees’
▶ Gartner:

▶ greater autonomy
▶ robustness
▶ adaptability
▶ explainability
▶ fairness
▶ decision support
▶ increased AI

applicability
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Correlation and causation
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Example: Eating pizza increases your IQ
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Correlation v.s. Causation

How to explain a correlation between two variables?

Reichenbach’s principle of common cause:1

If X and Y are correlated, then we must have one of the following causal relationships:

X Y

(a)

X Y

(b)

X

L

Y

(c)

1Reichenbach [1956]
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Correlation

Pearson correlation:

ρ(X ,Y ) =
Cov(X ,Y )√
Var(X )Var(Y )

=

√
Var(X )

Var(Y )
× the slope of the regression line.
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Example: Eating pizza increases your IQ

If eating pizza and IQ are correlated, what is the underlying causal mechanism?
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Example: Car repair shop
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‘flat tire’ := ‘flatness of tire’ > 0.75

‘broken engine’ := ‘brokenness of engine’ > 0.75

‘car in shop’ := ‘flat tire’ OR ‘broken engine’

Among the cars brought to the shop, ‘flat tire’ and
‘broken engine’ are negatively correlated!

What is the underlying causal mechanism?

None of Reichenbach’s systems apply. Instead, this
is a case of selection bias!
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Correlation and causation

If X and Y are correlated, then this is explained either by

▶ X → Y

▶ X ← Y

▶ X ← L→ Y

▶ selection bias

▶ functional constraints

▶ . . . ?

So correlation ≠⇒ causation

(My current research: how typical is causation without correlation?)
(So causation ≠⇒ correlation)
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(My current research: how typical is causation without correlation?)
(So causation ≠⇒ correlation)
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Spurious correlations

So, what is going on here?

1tylervigen.com
17 / 58
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Now, we’ve seen how correlation can relate to causation.

Is this distinction really important?
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Example: drug efficacy

Recovery No recovery Total Recovery rate

Drug 20 20 40 . . .%
No drug 16 24 40 . . .%

Total 36 44 80
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Example: drug efficacy

Males Recovery No recovery Total Recovery rate

Drug 18 12 30 . . .%
No drug 7 3 10 . . .%

Total 25 15 40

Females Recovery No recovery Total Recovery rate

Drug 2 8 10 . . .%
No drug 9 21 30 . . .%

Total 11 29 40
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Example: drug efficacy

For the entire population it’s better to take the drug, but for any subgroup of the
population it’s better not to take the drug ?

Simpson’s paradox2

2Simpson [1951]
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Okay, so correlation and causation are related, and the latter is more subtle than the former.

When do we care about all this?
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Causal effect estimation Selection bias

Causal discovery Counterfactuals
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Causal effect estimation Selection bias

Causal discovery Counterfactuals
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Example: optimizing a webpage
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Example: optimizing a webpage

▶ Decide which color X the “Buy now”
button should be

▶ to maximize the probability that the
user will buy the product, Y .

X = argmax
x

P(Y = 1|X = x)
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Example: optimizing a webpage

We might have

P(buy|color = orange) = 0.1 < 0.15 = P(buy|color = blue),

so should we always show the blue button?

This might be a case of Simpson’s paradox, where

P(buy|color = orange, dep’t = electr.) = 0.2 > 0.15 = P(buy|color = blue, dep’t = electr.).

We want to predict the outcome Y if we intervene on the color X of the button. Thus, we
want to estimate the causal effect of X on Y .
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Definition: Causal effect

‘Definition’: Intervention
When we intervene on X , we determine its value without any dependence on other variables.

X

C

Y

(a) Graph G

X

C

Y

(b) Graph Gdo(X )

‘Definition’: Causal effect
The causal effect of X on Y is the conditional probability of Y given an intervened value of
X , denoted with P(Y | do(X )).

Rule of thumb:
If X ← Y or if X and Y are confounded, we have P(Y |X ) ̸= P(Y |do(X )).

‘Seeing ̸= doing’
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Seeing ̸= doing: exercise 1

Explain why

P(rain|barometer = ‘rain’) ̸= P(rain|do(barometer = ‘rain’))
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Seeing ̸= doing: exercise 2

Explain why

P(hair length yesterday|visit barber today = 1)

̸= P(hair length yesterday|do(visit barber today = 1))

We don’t always want to predict the effect of a cause! E.g. predict nano scale properties
from micro scale measurements.
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Seeing ̸= doing: exercise 3

Explain why:
P(buy|color = blue) ̸= P(buy| do(color = blue))
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Seeing ̸= doing: exercise 4

Explain why:

P(IQ > 120|pizza’s eaten = 20) ̸= P(IQ > 120|do(pizza’s eaten = 20))
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Seeing ̸= doing: exercise 5

Explain why:

P(sunshine|ice cream consumption = ‘high’)

̸= P(sunshine|do(ice cream consumption = ‘high’))
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Seeing ̸= doing: exercise 6

Explain why:
P(recovery|drug = 1) ̸= P(recovery|do(drug = 1))
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Seeing ̸= doing: exercise 7

Prove that:

P(broken engine|Car in shop) ̸= P(broken engine| do(Car in shop))
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1. Give P(broken engine)

2. Give P(broken engine|Car in shop)

3. Draw a causal graph G with variables ‘broken
engine’, ‘Car in shop’, ‘flat tire’.

4. Draw the causal graph Gdo(Car in shop), i.e. the
graph where we intervene on ‘Car in shop’.

5. Motivate what is
P(broken engine|do(Car in shop))
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Randomized Controlled Trials

H X

C

Y

X

C

Y

Then there are no common causes of X and Y and Y is not a cause of X , hence
P(Y = 1|do(X = 1)) = P(Y = 1|X = 1).
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Randomized Controlled Trials

Flemish physician Jan Baptista van Helmont [Van Helmont, 1646]:

Let us take from the itinerants’ hospitals, from the camps or
from elsewhere 200 or 500 poor people with fevers, pleurisy etc.
and divide them in two: let us cast lots so that one half of them
fall to me and the other half to you. I shall cure them without
blood-letting or perceptible purging, you will do so according
to your knowledge (nor do I even hold you to your boast of
abstaining from phlebotomy or purging) and we shall see how
many funerals each of us will have: the outcome of the contest
shall be the reward of 300 florins deposited by each of us.

Popularized by Fisher [1925] for smaller confidence intervals of the t-test.
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RCT / Causal Effect Estimation

▶ In software engineering known as A/B testing3

▶ RCT is not always feasible or ethical: smoking causes lung cancer, eating
ultra-processed foods causes obesity, etc.

▶ In such cases, try to estimate the causal effect from observational data by correcting for
confounding bias.

▶ 2021 Nobel Prize in Economics is won by Angrist and Imbens for estimating causal
effects from observational data.

▶ Which correction method to apply depends on the causal graph.

Knowledge of the causal graph is instrumental for causal effect estimation from
observational data.

3Amazon offers their vendors an A/B testing platform.
37 / 58
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Applications: Decision Support Systems

Non-automated decision making

▶ For context E

▶ advise action X̂ ∈ {x1, ..., xn} to optimize the
expected outcome of Y

X̂ = argmax
x

P(Y = 1|E ,do(X = x))

▶ after which the ‘user’ takes action X

▶ and we observe outcome Y .

E

X̂

X

Y

Examples: decision support in healthcare (e.g. PacMed), decision support in legal cases
(recidivism risk), child welfare screening, bank loan applications, etc.

3Boeken et al. [2023b], Evaluating the Performative Effects of Decision Support Systems
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Applications: Contextual Bandits

Automated decision making:

▶ For context E

▶ pick action X ∈ {x1, ..., xn} to optimize the
expected outcome of Y

X = argmax
x

P(Y = 1|E ,do(X = x))

▶ after which we observe outcome Y .

E

X

Y

Examples: layout of online platforms, automated fraud detection, ranking of news items on
a webpage.
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Applications: Reinforcement Learning

Sequential automated decision making:

▶ At time t

▶ for context Et

▶ pick action Xt ∈ {x1, ..., xm} to optimize the
expected outcome of Yt+1

Xt = argmax
x

P(Yt+1 = 1|Et ,do(Xt = x))

▶ after which we observe outcome Yt

▶ and we continue to t + 1...

Et−1

Xt−1

Yt−1

Et

Xt

Yt

Et+1

Xt+1

Yt+1

Examples: self driving cars, Roomba’s, treatment regimes in healthcare, wind farm
optimization, cooling Google’s data centers, etc.
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Summary

We’ve seen:

▶ How to draw a causal graph

▶ What an intervention is

▶ What a causal effect is

▶ How to apply causal reasoning to practical cases

▶ How to estimate a causal effect with an RCT (A/B testing)

▶ ML problems that can leverage causal effect estimation
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Causal effect estimation Selection bias

Causal discovery Counterfactuals
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Causal discovery

▶ To identify a causal effect from observational data, we must know the causal graph of
the data generating process.

▶ In many cases, this graph is not readily available.
Notable exception: when we are learning from controlled sources (e.g. at Booking.com)

▶ Can we, from observing a system at rest (i.e. not intervening on it), infer the
underlying causal structure?

▶ At the heart of the controversy surrounding causality in statistics, with Pearson and
Fisher as strong opponents.

▶ Since 1980’s a serious field of research.
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Conditional dependence example: Car repair shop
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P(broken engine|Car in shop, flat tire) = . . .

P(broken engine|Car in shop, no flat tire) = . . .

So, given information about Z , any information
about X provides information about Y as well,
written X ⊥̸⊥Y |Z .4

What is the underlying causal mechanism?

4Dawid [1979]
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Causal discovery: V-structures

▶ Given data from variables X ,Y ,Z ,

▶ if X and Y are statistically independent (≈ not correlated) (‘X ⊥⊥Y ’)

▶ but conditioned on Z , they are statistically dependent (‘X ⊥̸⊥Y |Z ’)
▶ then the causal graph must be a v-structure:5

X

Z

Y

5assuming acylicity and no latent confounding
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Constraint-based causal discovery

X1 X2 X3 X4
...

...
...

...
...

...
...

...
...

...
...

...

→
X2⊥̸⊥X4

X2⊥⊥X4|X3

X1⊥⊥X2

X1⊥̸⊥X2|X3

etc.

→
X1 X2

X3

X4

5Actually, the algorithm outputs an equivalence class of graphs, but this is beyond the scope of this
presentation.
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Application: feature selection

Dataset:

X1 . . . X12 Y
...

...
...

...
...

...
...

...

Task:
Make a model to predict Y .

Which features should you use?

Select the Markov Boundary.6

6Yaramakala and Margaritis [2005]
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Applications of Causal Discovery

▶ Broad Institute of MIT and Harvard (world leading biomedical research center) is
betting on causal discovery to predict a genetic modification of human T-cells to
improve the cells endurance in fighting cancer.

▶ London based data consultancy CausaLens leverages Causal Discovery to validate their
assumptions of an underlying causal graph for causal effect estimation.

However, it is not (yet) robust:

▶ General conditional independence testing is a provably ‘unsolvable’ problem, and

▶ there is a lack of real-world datasets with a known ground-truth causal graph to
validate our algorithms.
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Causal effect estimation Selection bias

Causal discovery Counterfactuals
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Example: Cervical cancer screening

▶ We have data from Hospital Universitario de Caracas, Venezuela:7

X : Demographic and medical information, available through digital medical record
(age, use of contraceptives, STDs, etc.)

Y : Presence of cervical cancer

▶ Patients in this dataset are self-selected: their own initiative caused them to be
recorded in this dataset.

▶ Suppose we train a model to predict Y from digitally available features X .

▶ Can we use this model in a large-scale, automated screening of the population?8

X Y

S

v.s.
X Y

S

7Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
8
Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information
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Causal effect estimation Selection bias

Causal discovery Counterfactuals
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Example: Groninger HIV case

▶ I : Victim got injected with HIV infected blood

▶ U: Victim had unprotected intercourse with potentially HIV infected men

▶ H: The victim contracted HIV

▶ P(H = 1|I = 1) = 1/30

▶ P(H = 1|U = 1) = 1/300

What was the cause of H? The unprotected intercourse U or the injection I?

Probability of causation (in a possibly unrealistic model, see Vragovic [2023]):

0.9 ≤ P(H ′ = 0|U = 1, I = 1,H = 1,U ′ = 1, I ′ = 0) ≤ 0.91
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Example: Groninger HIV case

▶ In 2010 the court of appeal found the defendants guilty of aggravated assault. It is
argued that

P(H = 1|I = 1) = 1/30 > 1/300 = P(H = 1|U = 1),

hence I must be the cause of H.

▶ In 2012 the court of cassation ordered a re-trail of the case because of insufficient
evidence of I being the actual cause of H.

▶ In this re-trail, the defendants are convicted for attempted aggravated assault.

0.9 ≤ P(H ′ = 0|U = 1, I = 1,H = 1,U ′ = 1, I ′ = 0) ≤ 0.91

In the process of causal modelling we noticed that pieces of information are missing, making
the bounds on the probability of causation uninformative. It seems that causal modelling
could be a suitable methodology for gathering and processing statistical evidence in court
cases.
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Take-aways

▶ Different ways to explain correlation (some are non-causal).

▶ What is selection bias.

▶ Causal effect estimation: seeing ̸= doing.

▶ Randomized controlled trials (A/B testing).

▶ Applications of causal effect estimation in ML problems.

▶ The basic concepts behind causal discovery.

▶ (When to correct for selection bias)

▶ (What are counterfactuals, and how they can be used to determine the actual cause)
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Data Fallacies to Avoid

Read more at 
geckoboard.com/data-fallacies

Data Dredging
Repeatedly testing new hypotheses against the 
same set of data, failing to acknowledge that 
most correlations will be the result of chance.

Survivorship Bias
Drawing conclusions from an incomplete set of 

data, because that data has ‘survived’ some 
selection criteria.

Cherry Picking
Selecting results that fit your claim and 

excluding those that don’t. 

False Causality
Falsely assuming when two events appear 

related that one must have caused the other.

Gerrymandering
Manipulating the geographical boundaries used 

to group data in order to change the result.

Cobra Effect
Setting an incentive that accidentally produces 
the opposite result to the one intended. Also 

known as a Perverse Incentive.

Gambler’s Fallacy
Mistakenly believing that because something has 

happened more frequently than usual, it’s now 
less likely to happen in future (and vice versa).

Hawthorne Effect
The act of monitoring someone can affect their 

behaviour, leading to spurious findings. Also 
known as the Observer Effect.

Sampling Bias
Drawing conclusions from a set of data that isn’t 
representative of the population you’re trying to 

understand.

Simpson’s Paradox
When a trend appears in different subsets of 

data but disappears or reverses when the 
groups are combined.

McNamara Fallacy
Relying solely on metrics in complex situations 

and losing sight of the bigger picture.

Regression Towards the Mean
When something happens that’s unusually good 
or bad, it will revert back towards the average 

over time.

Publication Bias
Interesting research findings are more likely to 

be published, distorting our impression of 
reality.

Danger of Summary Metrics
Only looking at summary metrics and missing 

big differences in the raw data.

Overfitting
Creating a model that’s overly tailored to the 
data you have and not representative of the 

general trend.
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