"Eating pizza increases your IQ!"

Full Orbit pizza session

Philip Boeken
p.a.boeken@uva.nl
${ }^{1}$ University of Amsterdam The Netherlands
${ }^{2}$ Booking.com
The Netherlands
\section*{Booking.com}

September 15, 2023

About me

> '14-'17 BSc. Business Analytics (VU)
> '18-'20 MSc. Mathematics (UvA)
> '21-'... PhD Causality and Mathematical Statistics/ML/AI/...
> - Supervised by Prof. Dr. Joris Mooij (UvA)
> - Co-supervised by Dr. Onno Zoeter (Mercury Machine Learning Lab, Booking.com)

Credits

This presentation is heavily inspired by:

- Joris' inaugural lecture [Mooij, 2023];
- the MasterMath Causality course;
- Judea Pearl and Dana Mackenzie's The Book of Why [Pearl and Mackenzie, 2018].

Causality in the media

Business insider:

Study Links A Country's Chocolate Intake To How Many Nobel Prize Winners It Spawns

The best "brain food" might be chocolate, a new study out in the New England Journal of Medicine suggests. The study links a country's chocolate consumption and the number of Nobel Prize winners that country has created.

Business Insider

Causality in the media

The Guardian:

Diet of fish 'can prevent' teen violence

New study reveals that the root cause of crime may be biological, not social
Gaby Hinsliff, chief political correspondent
Sun 14 Sep 2003 09.22 BST
Feeding children a diet rich in fish could prevent violent and anti-social behaviour in their teens, according to research to be announced this week which suggests the root causes of crime may be biological rather than social.

Causality: early history

David Hume (1740):
Thus we remember to have seen that species of object we call flame, and to have felt that species of sensation we call heat. We likewise call to mind their constant conjunction in all past instances. Without any farther ceremony, we call the one cause and the other effect, and infer the existence of the one from that of the other.
Karl Pearson (1892):
Beyond such discarded fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana of even modern science, namely, the category of cause and effect.

Pearson introduced the correlation coefficient. To him, the slippery concepts of cause and effect seemed outdated and unscientific, compared to the mathematically clear and precise concept of a correlation coefficient.

Causality and statistics

Constructive timeline:

- Wright [1921]: Causal genetics model for guinea pigs (discredited by Pearson)
- Fisher [1925]: Influential advocacy of randomized controlled trials
- Rubin [1974]: Influential mathematical formulation of a causal statistical model
- Dawid [1979]: Proposed the statistical notion of conditional independence
- Robins and Morgenstern [1987]: Estimating causal effects in epidemiology (took 4 years to get published)
- Pearl [1988]: Graphical representation of causal models
- Glymour et al. [1987]: Learning causal structure (graphs) from observational data.

Causal Machine Learning: a hype

Monthly total arxiv uploads on a certain topic

Causal Machine Learning: a hype

Hype Cycle for Emerging Tech, 2022

Time

Plateau will be reached:

less than 2 years

- 'Neural Causal Models'
- 'Causal Regression Trees'
- Gartner:
- greater autonomy
- robustness
- adaptability
- explainability
- fairness
- decision support
- increased AI applicability

Correlation and causation

Example: Eating pizza increases your IQ

So, eating pizza increases your IQ. But this doesn't seem right, does it?

Correlation v.s. Causation

How to explain a correlation between two variables?

Reichenbach's principle of common cause: ${ }^{1}$

 If X and Y are correlated, then we must have one of the following causal relationships:
(a)

(b)

(c)

[^0]
Correlation

Pearson correlation:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}} \times \text { the slope of the regression line. }
$$

Correlation

Pearson correlation:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}} \times \text { the slope of the regression line. }
$$

(a)

(b)

(c)

Example: Eating pizza increases your IQ

If eating pizza and IQ are correlated, what is the underlying causal mechanism?

Example: Car repair shop

Example: Car repair shop

'flat tire' $:=$ 'flatness of tire' >0.75

Example: Car repair shop

$$
\begin{aligned}
& \text { 'flat tire' }:= \text { 'flatness of tire' }>0.75 \\
& \text { 'broken engine' }:=\text { 'brokenness of engine' }>0.75
\end{aligned}
$$

Example: Car repair shop

$$
\begin{aligned}
\text { 'flat tire' }: & =\text { 'flatness of tire' }>0.75 \\
\text { 'broken engine' }: & =\text { 'brokenness of engine' }>0.75 \\
\text { 'car in shop' }: & =\text { 'flat tire' OR 'broken engine' }
\end{aligned}
$$

Example: Car repair shop

$$
\begin{aligned}
\text { 'flat tire' }: & =\text { 'flatness of tire' }>0.75 \\
\text { 'broken engine' }: & =\text { 'brokenness of engine' }>0.75 \\
\text { 'car in shop' }: & =\text { 'flat tire' OR 'broken engine' }
\end{aligned}
$$

Among the cars brought to the shop, 'flat tire' and 'broken engine' are negatively correlated!

Example: Car repair shop

$$
\begin{aligned}
\text { 'flat tire' }: & =\text { 'flatness of tire' }>0.75 \\
\text { 'broken engine' }: & =\text { 'brokenness of engine' }>0.75 \\
\text { 'car in shop' }: & =\text { 'flat tire' OR 'broken engine' }
\end{aligned}
$$

Among the cars brought to the shop, 'flat tire' and 'broken engine' are negatively correlated!

What is the underlying causal mechanism?

Example: Car repair shop

Among the cars brought to the shop, 'flat tire' and 'broken engine' are negatively correlated!

What is the underlying causal mechanism?
None of Reichenbach's systems apply. Instead, this is a case of selection bias!

Correlation and causation

If X and Y are correlated, then this is explained either by

- $X \rightarrow Y$

Correlation and causation

If X and Y are correlated, then this is explained either by

- $X \rightarrow Y$
- $X \leftarrow Y$

Correlation and causation

If X and Y are correlated, then this is explained either by

- $X \rightarrow Y$
- $X \leftarrow Y$
- $X \leftarrow L \rightarrow Y$

Correlation and causation

If X and Y are correlated, then this is explained either by

- $X \rightarrow Y$
- $X \leftarrow Y$
- $X \leftarrow L \rightarrow Y$
- selection bias

Correlation and causation

If X and Y are correlated, then this is explained either by

- $X \rightarrow Y$
- $X \leftarrow Y$
- $X \leftarrow L \rightarrow Y$
- selection bias
- functional constraints

Correlation and causation

If X and Y are correlated, then this is explained either by

- $X \rightarrow Y$
- $X \leftarrow Y$
- $X \leftarrow L \rightarrow Y$
- selection bias
- functional constraints
- ...?

Correlation and causation

If X and Y are correlated, then this is explained either by

- $X \rightarrow Y$
- $X \leftarrow Y$
- $X \leftarrow L \rightarrow Y$
- selection bias
- functional constraints
- ...?

So correlation \nRightarrow causation
(My current research: how typical is causation without correlation?) (So causation \nRightarrow correlation)

Spurious correlations

Per capita cheese consumption
correlates with
Number of people who died by becoming tangled in their bedsheets

[^1]
Spurious correlations

Letters in Winning Word of Scripps National Spelling Bee correlates with
Number of people killed by venomous spiders

[^2]
Spurious correlations

Letters in Winning Word of Scripps National Spelling Bee correlates with
Number of people killed by venomous spiders

So, what is going on here?

[^3]Now, we've seen how correlation can relate to causation.
Is this distinction really important?

Example: drug efficacy

	Recovery	No recovery	Total	Recovery rate
Drug	20	20	40	$\ldots \%$
No drug	16	24	40	$\ldots \%$
Total	36	44	80	

Example: drug efficacy

Males	Recovery	No recovery	Total	Recovery rate
Drug	18	12	30	$\ldots \%$
No drug	7	3	10	$\ldots \%$
Total	25	15	40	

Females	Recovery	No recovery	Total	Recovery rate
Drug	2	8	10	$\ldots \%$
No drug	9	21	30	$\ldots \%$
Total	11	29	40	

Example: drug efficacy

For the entire population it's better to take the drug, but for any subgroup of the population it's better not to take the drug ?

Simpson's paradox ${ }^{2}$

[^4]Okay, so correlation and causation are related, and the latter is more subtle than the former. When do we care about all this?

Causal effect estimation

Causal discovery

Selection bias

Counterfactuals

Causal effect estimation

Causal discovery

Selection bias

Counterfactuals

Example: optimizing a webpage

Example: optimizing a webpage

- Decide which color X the "Buy now" button should be
- to maximize the probability that the user will buy the product, Y.

$$
X=\underset{x}{\arg \max } \mathbb{P}(Y=1 \mid X=x)
$$

Example: optimizing a webpage

We might have

$$
\mathbb{P}(\text { buy } \mid \text { color }=\text { orange })=0.1<0.15=\mathbb{P}(\text { buy } \mid \text { color }=\text { blue }),
$$

so should we always show the blue button?

Example: optimizing a webpage

We might have

$$
\mathbb{P}(\text { buy } \mid \text { color }=\text { orange })=0.1<0.15=\mathbb{P}(\text { buy } \mid \text { color }=\text { blue }),
$$

so should we always show the blue button?
This might be a case of Simpson's paradox, where
$\mathbb{P}($ buy \mid color $=$ orange, dep't $=$ electr. $)=0.2>0.15=\mathbb{P}($ buy \mid color $=$ blue, dep't $=$ electr..$)$.

Example: optimizing a webpage

We might have

$$
\mathbb{P}(\text { buy } \mid \text { color }=\text { orange })=0.1<0.15=\mathbb{P}(\text { buy } \mid \text { color }=\text { blue }),
$$

so should we always show the blue button?
This might be a case of Simpson's paradox, where
$\mathbb{P}($ buy \mid color $=$ orange, dep't $=$ electr. $)=0.2>0.15=\mathbb{P}($ buy \mid color $=$ blue, dep't $=$ electr..$)$.

We want to predict the outcome Y if we intervene on the color X of the button. Thus, we want to estimate the causal effect of X on Y.

Definition: Causal effect

‘Definition’: Intervention

When we intervene on X, we determine its value without any dependence on other variables.

(a) Graph G

(b) Graph $G_{\mathrm{do}(X)}$

Definition: Causal effect

‘Definition’: Intervention

When we intervene on X, we determine its value without any dependence on other variables.

(a) Graph G

(b) Graph $G_{\mathrm{do}(X)}$

‘Definition’: Causal effect

The causal effect of X on Y is the conditional probability of Y given an intervened value of X, denoted with $\mathbb{P}(Y \mid \operatorname{do}(X))$.

Definition: Causal effect

‘Definition’: Intervention

When we intervene on X, we determine its value without any dependence on other variables.

(a) Graph G

(b) Graph $G_{\mathrm{do}(X)}$

‘Definition’: Causal effect

The causal effect of X on Y is the conditional probability of Y given an intervened value of X, denoted with $\mathbb{P}(Y \mid \operatorname{do}(X))$.

Rule of thumb:
If $X \leftarrow Y$ or if X and Y are confounded, we have $\mathbb{P}(Y \mid X) \neq \mathbb{P}(Y \mid \operatorname{do}(X))$.
‘Seeing \neq doing'

Seeing \neq doing: exercise 1

Explain why

$$
\mathbb{P}(\text { rain } \mid \text { barometer }=\text { 'rain' }) \neq \mathbb{P}(\text { rain } \mid \text { do }(\text { barometer }=\text { 'rain' }))
$$

Seeing \neq doing: exercise 2

Explain why

$\mathbb{P}($ hair length yesterday \mid visit barber today $=1)$

$$
\neq \mathbb{P}(\text { hair length yesterday } \mid \text { do }(\text { visit barber today }=1))
$$

Seeing \neq doing: exercise 2

Explain why
$\mathbb{P}($ hair length yesterday \mid visit barber today $=1)$

$$
\neq \mathbb{P}(\text { hair length yesterday } \mid \text { do }(\text { visit barber today }=1))
$$

We don't always want to predict the effect of a cause! E.g. predict nano scale properties from micro scale measurements.

Seeing \neq doing: exercise 3

Explain why:

$$
\mathbb{P}(\text { buy } \mid \text { color }=\text { blue }) \neq \mathbb{P}(\text { buy } \mid \text { do }(\text { color }=\text { blue }))
$$

Seeing \neq doing: exercise 4

Explain why:

$$
\mathbb{P}(I Q>120 \mid \text { pizza's eaten }=20) \neq \mathbb{P}(I Q>120 \mid \text { do }(\text { pizza's eaten }=20))
$$

Seeing \neq doing: exercise 5

Explain why:

$$
\begin{aligned}
\mathbb{P}(\text { sunshine } \mid \text { ice cream consumption } & =\text { 'high' }) \\
& \neq \mathbb{P}(\text { sunshine } \mid \text { do(ice cream consumption }=\text { 'high' }))
\end{aligned}
$$

Seeing \neq doing: exercise 6

Explain why:

$$
\mathbb{P}(\text { recovery } \mid \text { drug }=1) \neq \mathbb{P}(\text { recovery } \mid \text { do }(\text { drug }=1))
$$

Seeing \neq doing: exercise 7

Prove that:
$\mathbb{P}($ broken engine \mid Car in shop $) \neq \mathbb{P}($ broken engine \mid do(Car in shop $))$

Seeing \neq doing: exercise 7

Prove that:
$\mathbb{P}($ broken engine \mid Car in shop $) \neq \mathbb{P}($ broken engine \mid do(Car in shop $))$

1. Give \mathbb{P} (broken engine)
2. Give \mathbb{P} (broken engine|Car in shop)
3. Draw a causal graph G with variables 'broken engine', 'Car in shop', 'flat tire'.
4. Draw the causal graph $G_{\text {do(Car in shop) }}$, i.e. the graph where we intervene on 'Car in shop'.
5. Motivate what is $\mathbb{P}\left(\right.$ broken engine ${ }^{\text {do(Car in shop })}$)

Seeing \neq doing: exercise 7

Prove that:
$\mathbb{P}($ broken engine \mid Car in shop $) \neq \mathbb{P}($ broken engine \mid do(Car in shop $))$

Randomized Controlled Trials

Randomized Controlled Trials

Then there are no common causes of X and Y and Y is not a cause of X, hence $\mathbb{P}(Y=1 \mid \operatorname{do}(X=1))=\mathbb{P}(Y=1 \mid X=1)$.

Randomized Controlled Trials

Flemish physician Jan Baptista van Helmont [Van Helmont, 1646]:
Let us take from the itinerants' hospitals, from the camps or from elsewhere 200 or 500 poor people with fevers, pleurisy etc. and divide them in two: let us cast lots so that one half of them fall to me and the other half to you. I shall cure them without blood-letting or perceptible purging, you will do so according to your knowledge (nor do I even hold you to your boast of abstaining from phlebotomy or purging) and we shall see how many funerals each of us will have: the outcome of the contest shall be the reward of 300 florins deposited by each of us.

Popularized by Fisher [1925] for smaller confidence intervals of the t-test.

RCT / Causal Effect Estimation

- In software engineering known as A / B testing ${ }^{3}$

[^5]
RCT / Causal Effect Estimation

- In software engineering known as A / B testing ${ }^{3}$
- RCT is not always feasible or ethical: smoking causes lung cancer, eating ultra-processed foods causes obesity, etc.

[^6]
RCT / Causal Effect Estimation

- In software engineering known as A / B testing ${ }^{3}$
- RCT is not always feasible or ethical: smoking causes lung cancer, eating ultra-processed foods causes obesity, etc.
- In such cases, try to estimate the causal effect from observational data by correcting for confounding bias.

[^7]
RCT / Causal Effect Estimation

- In software engineering known as A / B testing ${ }^{3}$
- RCT is not always feasible or ethical: smoking causes lung cancer, eating ultra-processed foods causes obesity, etc.
- In such cases, try to estimate the causal effect from observational data by correcting for confounding bias.
- 2021 Nobel Prize in Economics is won by Angrist and Imbens for estimating causal effects from observational data.

[^8]
RCT / Causal Effect Estimation

- In software engineering known as A / B testing ${ }^{3}$
- RCT is not always feasible or ethical: smoking causes lung cancer, eating ultra-processed foods causes obesity, etc.
- In such cases, try to estimate the causal effect from observational data by correcting for confounding bias.
- 2021 Nobel Prize in Economics is won by Angrist and Imbens for estimating causal effects from observational data.
- Which correction method to apply depends on the causal graph.

[^9]
RCT / Causal Effect Estimation

- In software engineering known as A / B testing ${ }^{3}$
- RCT is not always feasible or ethical: smoking causes lung cancer, eating ultra-processed foods causes obesity, etc.
- In such cases, try to estimate the causal effect from observational data by correcting for confounding bias.
- 2021 Nobel Prize in Economics is won by Angrist and Imbens for estimating causal effects from observational data.
- Which correction method to apply depends on the causal graph.

Knowledge of the causal graph is instrumental for causal effect estimation from observational data.

[^10]
Applications: Decision Support Systems

Non-automated decision making

- For context E
- advise action $\hat{X} \in\left\{x_{1}, \ldots, x_{n}\right\}$ to optimize the expected outcome of Y

$$
\hat{X}=\underset{x}{\arg \max } \mathbb{P}(Y=1 \mid E, \operatorname{do}(X=x))
$$

- after which the 'user' takes action X
- and we observe outcome Y.

Examples: decision support in healthcare (e.g. PacMed), decision support in legal cases (recidivism risk), child welfare screening, bank loan applications, etc.

[^11]
Applications: Contextual Bandits

Automated decision making:

- For context E
- pick action $X \in\left\{x_{1}, \ldots, x_{n}\right\}$ to optimize the expected outcome of Y

$$
X=\underset{x}{\arg \max } \mathbb{P}(Y=1 \mid E, \operatorname{do}(X=x))
$$

- after which we observe outcome Y.

Examples: layout of online platforms, automated fraud detection, ranking of news items on a webpage.

Applications: Reinforcement Learning

Sequential automated decision making:

- At time t
- for context E_{t}
- pick action $X_{t} \in\left\{x_{1}, \ldots, x_{m}\right\}$ to optimize the expected outcome of Y_{t+1}

$$
X_{t}=\underset{x}{\arg \max } \mathbb{P}\left(Y_{t+1}=1 \mid E_{t}, \operatorname{do}\left(X_{t}=x\right)\right)
$$

- after which we observe outcome Y_{t}
- and we continue to $t+1 \ldots$

Examples: self driving cars, Roomba's, treatment regimes in healthcare, wind farm optimization, cooling Google's data centers, etc.

Summary

We've seen:

- How to draw a causal graph
- What an intervention is
- What a causal effect is
- How to apply causal reasoning to practical cases
- How to estimate a causal effect with an RCT (A/B testing)
- ML problems that can leverage causal effect estimation

Causal effect estimation

Causal discovery

Selection bias

Counterfactuals

Causal discovery

- To identify a causal effect from observational data, we must know the causal graph of the data generating process.
- In many cases, this graph is not readily available.

Notable exception: when we are learning from controlled sources (e.g. at Booking.com)

- Can we, from observing a system at rest (i.e. not intervening on it), infer the underlying causal structure?
- At the heart of the controversy surrounding causality in statistics, with Pearson and Fisher as strong opponents.
- Since 1980's a serious field of research.

Conditional dependence example: Car repair shop

$\begin{array}{ll}\mathbb{P}(\text { broken engine } \mid \text { Car in shop, flat tire }) & =\ldots \\ \mathbb{P}(\text { broken engine } \mid \text { Car in shop, no flat tire }) & =\ldots\end{array}$

[^12]
Conditional dependence example: Car repair shop

$\begin{array}{ll}\mathbb{P}(\text { broken engine } \mid \text { Car in shop, flat tire }) & =\ldots \\ \mathbb{P}(\text { broken engine } \mid \text { Car in shop, no flat tire }) & =\ldots\end{array}$
So, given information about Z, any information about X provides information about Y as well, written $X \not \Perp Y \mid Z .{ }^{4}$

What is the underlying causal mechanism?

[^13]
Causal discovery: V-structures

- Given data from variables X, Y, Z,

[^14]
Causal discovery: V-structures

- Given data from variables X, Y, Z,
- if X and Y are statistically independent $(\approx$ not correlated) (' $X \Perp Y$ ')

[^15]
Causal discovery: V-structures

- Given data from variables X, Y, Z,
- if X and Y are statistically independent $\left(\approx\right.$ not correlated) (' $\left.X \Perp Y^{\prime}\right)$
- but conditioned on Z, they are statistically dependent (' $X \not \not Y Y \mid Z$ ')

[^16]
Causal discovery: V-structures

- Given data from variables X, Y, Z,
- if X and Y are statistically independent $(\approx$ not correlated) ($X \Perp Y$ ')
- but conditioned on Z, they are statistically dependent (' $X \not \not Y Y \mid Z$ ')
- then the causal graph must be a v-structure: ${ }^{5}$

[^17]
Constraint-based causal discovery

X_{1}	x_{2}	x_{3}	X_{4}		
\vdots	\vdots	\vdots	\vdots		
\vdots	\vdots	\vdots	\vdots		
\vdots	\vdots	\vdots	\vdots	\rightarrow	$x_{2} \notin x_{4}$
:---					
$x_{2} \Perp x_{4} \mid x_{3}$					
$x_{1} \Perp x_{2}$					
$x_{1} \not \Perp x_{2} \mid x_{3}$					
etc.	\rightarrow				

${ }^{5}$ Actually, the algorithm outputs an equivalence class of graphs, but this is beyond the scope of this presentation.

Application: feature selection

Dataset:

X_{1}	\ldots	X_{12}	Y
\vdots	\vdots	\vdots	\vdots
\vdots	\vdots	\vdots	\vdots

Task:

Make a model to predict Y.

Which features should you use?
${ }^{6}$ Yaramakala and Margaritis [2005]

Application: feature selection

Dataset:

X_{1}	\ldots	X_{12}	Y
\vdots	\vdots	\vdots	\vdots
\vdots	\vdots	\vdots	\vdots

Task:
Make a model to predict Y.

Which features should you use?

[^18]
Application: feature selection

Dataset:

X_{1}	\ldots	X_{12}	Y
\vdots	\vdots	\vdots	\vdots
\vdots	\vdots	\vdots	\vdots

Task:
Make a model to predict Y.

Which features should you use?

[^19]
Application: feature selection

Dataset:

X_{1}	\ldots	X_{12}	Y
\vdots	\vdots	\vdots	\vdots
\vdots	\vdots	\vdots	\vdots

Task:
Make a model to predict Y.

Which features should you use?

Select the Markov Boundary. ${ }^{6}$

[^20]
Applications of Causal Discovery

- Broad Institute of MIT and Harvard (world leading biomedical research center) is betting on causal discovery to predict a genetic modification of human T-cells to improve the cells endurance in fighting cancer.
- London based data consultancy CausaLens leverages Causal Discovery to validate their assumptions of an underlying causal graph for causal effect estimation.

However, it is not (yet) robust:

- General conditional independence testing is a provably 'unsolvable' problem, and
- there is a lack of real-world datasets with a known ground-truth causal graph to validate our algorithms.

Causal effect estimation

Causal discovery

Selection bias

Counterfactuals

Example: Cervical cancer screening

- We have data from Hospital Universitario de Caracas, Venezuela: ${ }^{7}$

[^21]
Example: Cervical cancer screening

- We have data from Hospital Universitario de Caracas, Venezuela: ${ }^{7}$
X : Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)

[^22]
Example: Cervical cancer screening

- We have data from Hospital Universitario de Caracas, Venezuela: ${ }^{7}$
X : Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
Y : Presence of cervical cancer

[^23]
Example: Cervical cancer screening

- We have data from Hospital Universitario de Caracas, Venezuela: ${ }^{7}$
X : Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.) Y : Presence of cervical cancer
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.

[^24]
Example: Cervical cancer screening

- We have data from Hospital Universitario de Caracas, Venezuela: ${ }^{7}$
X : Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.) Y : Presence of cervical cancer
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.
- Suppose we train a model to predict Y from digitally available features X.

[^25]
Example: Cervical cancer screening

- We have data from Hospital Universitario de Caracas, Venezuela: ${ }^{7}$
X : Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
Y : Presence of cervical cancer
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.
- Suppose we train a model to predict Y from digitally available features X.
- Can we use this model in a large-scale, automated screening of the population? ${ }^{8}$

[^26]
Example: Cervical cancer screening

- We have data from Hospital Universitario de Caracas, Venezuela: ${ }^{7}$
X : Demographic and medical information, available through digital medical record (age, use of contraceptives, STDs, etc.)
Y : Presence of cervical cancer
- Patients in this dataset are self-selected: their own initiative caused them to be recorded in this dataset.
- Suppose we train a model to predict Y from digitally available features X.
- Can we use this model in a large-scale, automated screening of the population? ${ }^{8}$

v.s.

[^27]Causal effect estimation

Causal discovery

Selection bias

Counterfactuals

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood
- U: Victim had unprotected intercourse with potentially HIV infected men

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood
- U: Victim had unprotected intercourse with potentially HIV infected men
- H: The victim contracted HIV

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood
- U: Victim had unprotected intercourse with potentially HIV infected men
- H: The victim contracted HIV
- $\mathbb{P}(H=1 \mid I=1)=1 / 30$

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood
- U: Victim had unprotected intercourse with potentially HIV infected men
- H: The victim contracted HIV
- $\mathbb{P}(H=1 \mid I=1)=1 / 30$
- $\mathbb{P}(H=1 \mid U=1)=1 / 300$

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood
- U: Victim had unprotected intercourse with potentially HIV infected men
- H: The victim contracted HIV
- $\mathbb{P}(H=1 \mid I=1)=1 / 30$
- $\mathbb{P}(H=1 \mid U=1)=1 / 300$

What was the cause of H ? The unprotected intercourse U or the injection I ?

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood
- U: Victim had unprotected intercourse with potentially HIV infected men
- H: The victim contracted HIV
- $\mathbb{P}(H=1 \mid I=1)=1 / 30$
- $\mathbb{P}(H=1 \mid U=1)=1 / 300$

What was the cause of H ? The unprotected intercourse U or the injection I?

Example: Groninger HIV case

- I: Victim got injected with HIV infected blood
- U: Victim had unprotected intercourse with potentially HIV infected men
- H: The victim contracted HIV
- $\mathbb{P}(H=1 \mid I=1)=1 / 30$
- $\mathbb{P}(H=1 \mid U=1)=1 / 300$

What was the cause of H ? The unprotected intercourse U or the injection I?

Probability of causation (in a possibly unrealistic model, see Vragovic [2023]):

$$
0.9 \leq \mathbb{P}\left(H^{\prime}=0 \mid U=1, I=1, H=1, U^{\prime}=1, I^{\prime}=0\right) \leq 0.91
$$

Example: Groninger HIV case

- In 2010 the court of appeal found the defendants guilty of aggravated assault. It is argued that

$$
\mathbb{P}(H=1 \mid I=1)=1 / 30>1 / 300=\mathbb{P}(H=1 \mid U=1)
$$

hence I must be the cause of H.

Example: Groninger HIV case

- In 2010 the court of appeal found the defendants guilty of aggravated assault. It is argued that

$$
\mathbb{P}(H=1 \mid I=1)=1 / 30>1 / 300=\mathbb{P}(H=1 \mid U=1)
$$

hence I must be the cause of H.

- In 2012 the court of cassation ordered a re-trail of the case because of insufficient evidence of I being the actual cause of H.

Example: Groninger HIV case

- In 2010 the court of appeal found the defendants guilty of aggravated assault. It is argued that

$$
\mathbb{P}(H=1 \mid I=1)=1 / 30>1 / 300=\mathbb{P}(H=1 \mid U=1)
$$

hence I must be the cause of H.

- In 2012 the court of cassation ordered a re-trail of the case because of insufficient evidence of I being the actual cause of H.
- In this re-trail, the defendants are convicted for attempted aggravated assault.

Example: Groninger HIV case

- In 2010 the court of appeal found the defendants guilty of aggravated assault. It is argued that

$$
\mathbb{P}(H=1 \mid I=1)=1 / 30>1 / 300=\mathbb{P}(H=1 \mid U=1)
$$

hence I must be the cause of H.

- In 2012 the court of cassation ordered a re-trail of the case because of insufficient evidence of I being the actual cause of H.
- In this re-trail, the defendants are convicted for attempted aggravated assault.

$$
0.9 \leq \mathbb{P}\left(H^{\prime}=0 \mid U=1, I=1, H=1, U^{\prime}=1, I^{\prime}=0\right) \leq 0.91
$$

Example: Groninger HIV case

- In 2010 the court of appeal found the defendants guilty of aggravated assault. It is argued that

$$
\mathbb{P}(H=1 \mid I=1)=1 / 30>1 / 300=\mathbb{P}(H=1 \mid U=1)
$$

hence I must be the cause of H.

- In 2012 the court of cassation ordered a re-trail of the case because of insufficient evidence of I being the actual cause of H.
- In this re-trail, the defendants are convicted for attempted aggravated assault.

$$
0.9 \leq \mathbb{P}\left(H^{\prime}=0 \mid U=1, I=1, H=1, U^{\prime}=1, I^{\prime}=0\right) \leq 0.91
$$

In the process of causal modelling we noticed that pieces of information are missing, making the bounds on the probability of causation uninformative. It seems that causal modelling could be a suitable methodology for gathering and processing statistical evidence in court cases.

Take-aways

Take-aways

- Different ways to explain correlation (some are non-causal).
- What is selection bias.
- Causal effect estimation: seeing \neq doing.
- Randomized controlled trials (A/B testing).
- Applications of causal effect estimation in ML problems.
- The basic concepts behind causal discovery.
- (When to correct for selection bias)
- (What are counterfactuals, and how they can be used to determine the actual cause)

Data Fallacies to Avoid

References I

P. Boeken, N. de Kroon, M. de Jong, J. M. Mooij, and O. Zoeter. Correcting for Selection Bias and Missing Response in Regression using Privileged Information. In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (To appear). PMLR, 2023a.
P. Boeken, O. Zoeter, and J. M. Mooij. Evaluating the performative effects of decision support systems, May 2023b.
A. P. Dawid. Conditional Independence in Statistical Theory. Journal of the Royal Statistical Society. Series B (Methodological), 41(1):1-31, 1979. ISSN 0035-9246. URL https://www.jstor.org/stable/2984718.
R. A. Fisher. Statistical Methods for Research Workers. Number 3. Oliver and Boyd, 1925.
C. Glymour, R. Scheines, P. Spirtes, and K. Kelly. Discovering causal structure: Artificial intelligence. Philosophy of science, and Statistical Modeling, 394, 1987.
J. M. Mooij. Causality: from data to science. Nieuw Archief voor Wiskunde, 24:76-87, 62023.
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. The Morgan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann, San Francisco, Calif, rev. 2. ed., transferred to digital printing edition, 1988. ISBN 978-1-55860-479-7.

References II

J. Pearl and D. Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.
H. Reichenbach. The direction of time. 1956.
J. M. Robins and H. Morgenstern. The foundations of confounding in epidemiology. Computers \& Mathematics with Applications, 14(9):869-916, Jan. 1987. ISSN 0898-1221. doi: 10.1016/0898-1221(87)90236-7. URL https://www.sciencedirect.com/science/article/pii/0898122187902367.
D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5):688-701, Oct. 1974. ISSN 1939-2176, 0022-0663. doi: 10.1037/h0037350. URL http://doi.apa.org/getdoi.cfm?doi=10.1037/h0037350.
E. H. Simpson. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society. Series B (Methodological), 13(2):238-241, 1951. ISSN 0035-9246. URL https://www.jstor.org/stable/2984065.
J. B. Van Helmont. Ortus Medicinae, Id Est Initia Physicae Inaudita: Progressus medicinae novus, In Morborum Ultionem ad Vitam longam. Apud Ludovicum Elzevirium, 1646.
M. Vragovic. Counterfactual Probabilities in Law: "the Groninger HIV case". PhD thesis, 2023.

References III

Wright. Correlation and Causation. 1921.
S. Yaramakala and D. Margaritis. Speculative markov blanket discovery for optimal feature selection. In Fifth IEEE International Conference on Data Mining (ICDM'05), pages 4 pp.-, 2005. doi: 10.1109/ICDM.2005.134.

[^0]: ${ }^{1}$ Reichenbach [1956]

[^1]: ${ }^{1}$ tylervigen.com

[^2]: ${ }^{1}$ tylervigen.com

[^3]: ${ }^{1}$ tylervigen.com

[^4]: ${ }^{2}$ Simpson [1951]

[^5]: ${ }^{3}$ Amazon offers their vendors an A / B testing platform.

[^6]: ${ }^{3}$ Amazon offers their vendors an A / B testing platform.

[^7]: ${ }^{3}$ Amazon offers their vendors an A / B testing platform.

[^8]: ${ }^{3}$ Amazon offers their vendors an A / B testing platform.

[^9]: ${ }^{3}$ Amazon offers their vendors an A / B testing platform.

[^10]: ${ }^{3}$ Amazon offers their vendors an A / B testing platform.

[^11]: ${ }^{3}$ Boeken et al. [2023b], Evaluating the Performative Effects of Decision Support Systems

[^12]: ${ }^{4}$ Dawid [1979]

[^13]: ${ }^{4}$ Dawid [1979]

[^14]: ${ }^{5}$ assuming acylicity and no latent confounding

[^15]: ${ }^{5}$ assuming acylicity and no latent confounding

[^16]: ${ }^{5}$ assuming acylicity and no latent confounding

[^17]: ${ }^{5}$ assuming acylicity and no latent confounding

[^18]: ${ }^{6}$ Yaramakala and Margaritis [2005]

[^19]: ${ }^{6}$ Yaramakala and Margaritis [2005]

[^20]: ${ }^{6}$ Yaramakala and Margaritis [2005]

[^21]: ${ }^{7}$ Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
 ${ }^{8}$ Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information

[^22]: ${ }^{7}$ Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
 ${ }^{8}$ Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information

[^23]: ${ }^{7}$ Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
 ${ }^{8}$ Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information

[^24]: ${ }^{7}$ Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
 ${ }^{8}$ Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information

[^25]: ${ }^{7}$ Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
 ${ }^{8}$ Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information

[^26]: ${ }^{7}$ Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
 ${ }^{8}$ Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information

[^27]: ${ }^{7}$ Available at https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors).
 ${ }^{8}$ Boeken et al. [2023a], Correcting for Selection Bias and Missing Response in Regression Using Privileged Information

