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The importance of a graphical Markov property I I

For an acyclic SCM M with endogenous variables V , graph (ADMG) G (M), observational
distribution PM(XV ), we have the global Markov property:

A
d
⊥
G
B |C =⇒ XA ⊥⊥

P(XV )
XB |XC

for all subsets A,B,C ⊆ V .
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The importance of a graphical Markov property II

A Markov property for a causal model M and a notion of intervention Mdo(X ) imply:

1. Transportability of statistical relations: Y ⊥d
G S |X =⇒ E[Y |X ] = E[Y |X , S = 1].

2. Identification of causal effects:
▶ Do-calculus, e.g. Y ⊥d

Gdo(IX )
X |IX ,Z =⇒ P(Y |do(X ),Z ) = P(Y |X ,Z )

▶ Adjustment formulae, e.g. Y ⊥d
Gdo(IX )

X |IX ,Z and Z ⊥d
Gdo(IX )

IX imply

P(Y |do(X = x)) =
∑
z

P(Y |X = x ,Z = z)P(Z = z).

▶ ID algorithm

3. Constraint-based causal discovery, under the faithfulness assumption

A
d
̸⊥
G
B |C =⇒ XA ⊥̸⊥

P(XV )
XB |XC

and with availability of a statistical CI test.

For an overview, see lecture notes for the MasterMath course ‘Causality’ (Forré and Mooij,
2023).
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Dynamical Systems I

Often, SCMs are used to model for a single item, a single measurement per variable. When
data is drawn i.i.d., statistical methods can be used for inference.

Consider the following data of multiple mosquitofish:

Fish Weight (g) Age (d) VI Water temp.

1 1.2 30 0 16.2
2 0.8 35 1 17.0
3 0.67 29 0 17.9
4 1.12 25 0 15.4
...
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Dynamical systems II

It can be that for each item, the variables are measured repeatedly over time. (Often
referred to as multidimensional time series, or panel data.)

Fish Weight (g) Age (d) VI Water temp.

1 0.41 1 0 16.2
...

...
...

...
...

1 1.23 40 1 15.0
2 0.37 1 0 15.7
...

...
...

...
...

2 1.45 40 1 18.3
...

...
...

...
...
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Dynamical systems III

In certain domains (e.g. physics, chemistry, biology, neurology), specific differential equation
models are known which appropriately describe such dynamical systems.

▶ Ordinary Differential Equations

▶ Random Differential Equations

▶ Stochastic Differential Equations

However, clasically these models are merely descriptive, and are not equipped with causal
semantics.
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Some existing work

▶ Granger causality for DBNs (Eichler, 2012)

▶ Local Independence Graphs (SDEs, no causal calculus) (Didelez, 2008; Mogensen and
Hansen, 2020)

▶ Causal constraints models: Blom et al. (2021)
▶ Uses Simon’s causal ordering algorithm to solve sets of equations

▶ Equilibration of perfectly adaptive systems (RDEs) (Blom and Mooij, 2023)
▶ Dynamic Structural Causal Models (Rubenstein et al., 2018)

▶ Models trajectories as a whole
▶ We extend their definition from ODEs to SDEs, and prove a Markov property.

▶ Structural Dynamical Causal Models (Bongers et al., 2022)
▶ Models trajectories of RDE solutions as a whole, proves a Markov property.
▶ Includes derivative processes as endogenous variables (impossible for SDEs!)
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Our goal

In this work, we derive a Markov property for entire sample paths of discrete time and
continuous time stochastic processes, which allows for causal reasoning, inference, and
discovery, on the level of entire sample paths.
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W
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Dynamic Bayesian Networks

Definition (DBN, Dean and Kanazawa (1989); Murphy (2002))

Let V be a finite set of endogenous variables, and let T = [1,T ] ∩ N0 for some T ∈ N. A
set of conditional distributions

Db :
{
P(Xv (t)|{XV (s) : s < t}) for all v ∈ V (1)

is referred to as a Dynamic Bayesian Network.

X1 X2 X3
. . .

Y1 Y2 Y3
. . .

?
=⇒

X

Y

The class of DBNs includes ARMA, Hidden Markov Models, MDP, POMDPs, etc.
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Ordinary Differential Equations

Let V be a finite set of endogenous variables, W a finite set of exogenous variables. Let
T = [0,T ] for some T ∈ N.

Definition (ODE)

For ξV ∈ R|V |, eW ∈ C (T ,R)|W | and gV : T × R|V | × R|W | → R|V |, we refer to

Do :

{
d
dt xv (t) = gv (t, xV (t), eW (t))

xv (0) = ξv
for all v ∈ V

as an ordinary differential equation.

This can easily be extended to higher (finite) order ODE’s.
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ODE: Example

0 2 4 6 8

t

w
ei

gh
t

Gompertz ODE: d
dt x(t) = x(t)(a− b ln(x(t))), x(0) = c
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Random Differential Equations

The growth of different fish can be governed by different dynamics. Growth rate of
mosquitofish depends on genetic factors, and whether it got a certain viral infection as
larvae.
So, for each individual the dynamics are deterministic, over the population the dynamics are
stochastic.
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Random Differential Equations

Definition (RDE)

For probability space (Ω,F ,P), random variables ξV : Ω → R|V |,EW : Ω → C (T ,R)|W |

and gV : T × R|V | × R|W | → R|V |, we refer to

Dr :

{
d
dtXv (t) = gv (t,XV (t),EW (t))

Xv (0) = ξv
for all v ∈ V

as a random differential equation. A stochastic process XV : Ω → C 1(T ,R)|V | is called a
solution of Dr if for P-almost all ω it satisfies the ODE

Do(ω) :

{
d
dtXv (ω, t) = gv (t,XV (ω, t),EW (ω, t))

Xv (ω, 0) = ξv (ω)
for all v ∈ V .
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Integral representation of ODE/RDE

An ordinary/random differential equation{
d
dtXv (t) = gv (t,XV (t),EW (t))

Xv (0) = ξv

can equivalently be represented by the integral equation

Xv (t) = ξv +

∫ t

0
gv (s,XV (s),EW (s))ds.
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RDE: Example

0 2 4 6 8

t

w
ei

gh
t

X (t) = C +

∫ t

0
X (s)(A− B ln(X (s)))ds
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Random flutuations during lifetime.

When random factors influence the dynamics throughout the life of an individual, this is
often modelled with an SDE. This allows for non-differentiability, unbounded variation, and
even jumps.
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Stochastic Integration I

Definition (Brownian motion, Thiele, Bachelier, Wiener)

An R-valued stochastic process B with time index [0,∞) is called a Brownian motion if

1. B(0) = 0 a.s.

2. B ∈ C (T ,R) a.s.
3. The increments of B are independent

4. B(t)− B(s) ∼ N (0, t − s) for all 0 ≤ s < t < ∞.

The Brownian motion is nowhere differentiable and has unbounded variation, i.e.
limn

∑n−1
i=0 |B(ω, tni+1)− B(ω, tni )| = ∞ for almost all ω, where tni+1 := t i

n .
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Stochastic Integration II

Recall the definition of the Riemann integral∫ t

0
X (s)ds := lim

n→∞

n−1∑
i=0

X (tni )(t
n
i+1 − tni ),

and recall for A : T → R of bounded variation the Riemann-Stieltjes integral∫ t

0
X (s)dA(s) := lim

n→∞

n−1∑
i=0

X (tni )(A(t
n
i+1)− A(tni )).

Definition (Stochastic integral, Itô)

Given Brownian motion B , stochastic process X , then (under measurability and integrability
conditions) the Itô integral of X w.r.t. B is a random variable defined as the limit∫ t

0
X (s)dB(s) := plim

n→∞

n−1∑
i=0

X (tni )(B(t
n
i+1)− B(tni )).
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Stochastic Differential Equations (Diffusion, Itô)

Definition (Itô/diffusion SDE)

Given a Brownian motion B and functions g1, g2 : R → R, we refer to

X (t) = X (0) +

∫ t

0
g1(X (s))ds +

∫ t

0
g2(X (s))dB(s) (2)

as a diffusion SDE.

Theorem (Markov solutions, Protter (2004), Theorem V.6.32)

Any solution X of (2) is strong Markov and continuous (a.k.a. a diffusion).

Note that SDEs strictly generalise Random Differential Equations.
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Diffusion SDE: Example

0 2 4 6 8

t

w
ei

gh
t

X (t) = C +

∫ t

0
X (s)(A− B ln(X (s)))ds +

∫ t

0
DdB(s)
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Random jumps during lifetime

A fish’s tail might get bitten off, causing a downward jump in its weight. To this end, we go
beyond continuous functions C (T ,R), and consider the space of càdlàg functions.

Definition (Càdlàg functions)

A function f : T → R is called càdlàg (continu à droit, limité à gauche) if it is
right-continuous and has left-limits. Let D(T ,R) := {f : T → R |f is càdlàg}.
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Stochastic Differential Equations (Jump-diffusion)

Definition (Jump-diffusion SDE)

Let B be a Brownian motion, N a jump process, then we refer to

X (t) = ξ +

∫ t

0
g1(X (s))ds +

∫ t

0
g2(X (s))dB(s) +

∫ t

0
g3(X (s−))dN(s) (3)

as a jump-diffusion SDE, where X (t−) := lims↑t X (s).

Theorem (Protter (2004) Theorem V.6.32)

Any solution X of (3) is strong Markov and càdlàg.
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Jump-diffusion SDE: Example

0 2 4 6 8

t

w
ei

gh
t

X (t) = C +

∫ t

0
X (s)(A− B ln(X (s)))ds +

∫ t

0
DdB(s)−

∫ t

0
dN(s)
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Discontinuous, non-Markov stochastic processes (semimartingales)

The most general class of stochastic processes Z for which a stochastic integral
∫
XdZ can

be defined, is the class of semimartingales (Protter, 2004, Theorem III.1.1).

Important properties of semimartingales are:

▶ semimartingales are not necessarily Markov;

▶ all semimartingales are càdlàg.
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Stochastic Differential Equations (Semimartingale)

Definition (Semimartingale SDE)

For finite index sets V ,W , a finite random variable ξw , an R-valued semimartingale Zw for
every w ∈ W , and function gv ,w : T × R|V | → R for all v ∈ V ,w ∈ W , we refer to

Ds : Xv (t) = ξv +
∑
w∈W

∫ t

0
gv ,w (s,XV (s−))dZw (s) for all v ∈ V (4)

as a semimartingale SDE.

Theorem (Protter (2004) Theorem V.3.7)

If gv ,w is Lipschitz for all v ∈ V ,w ∈ W , there exists a unique semimartingale XV that is a
solution of Ds .
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Comparison of modelling frameworks

▶ Discrete time: DBN

▶ Continuous time:
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Given probability space (Ω,F ,P), independent random variables ξ1, ξ2, ξ3 : Ω → R and
semimartingales Z1,Z2,Z3 taking values in R, consider the SDE

D :


X1(t) = ξ1 +

∫ t
0 g1(s,X1(s−))dZ1(s)

X2(t) = ξ2 +
∫ t
0 g2(s,X1(s−),X2(s−))dZ2(s)

X3(t) = ξ3 +
∫ t
0 g3(s,X2(s−),X3(s−))dZ3(s)

What can be said about the causal relations among the variables ξ1, ξ2, ξ3,Z1,Z2,Z3 and
solutions X1,X2,X3? (Provided they exist).

?? ??

X1

X2

X3

ξ1

ξ2

ξ3

Z1

Z2

Z3



Structural Causal Models ‘on Standard Borel Spaces’ I

Definition (Standard Borel Space)

A measurable space (X ,Σ) is called a standard Borel space if there exists a metric d on X
such that (X , d) is a complete metric space with a countable dense subset (a.k.a. a Polish
space), for which Σ is the induced Borel σ-algebra.

Theorem (Kuratowski, Kechris (1995), Theorem 15.6)

Every standard Borel space is measurably isomorphic to one of the following measurable
spaces:

▶ a countable set N ⊆ N with the power set σ-algebra 2N .

▶ the real line R with the Borel σ-algebra.
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Structural Causal Models ‘on Standard Borel Spaces’ II

Definition (Structural causal model, Bongers et al. (2021))

Formally, a structural causal model is a tuple

M = ⟨V ,W ,X , E , f ,PE⟩

where

1. V ,W are disjoint finite index sets of endogenous variables and exogenous variables
respectively,

2. the endogenous domain X =
∏

v∈V Xv and exogenous domain E =
∏

w∈W Ew are
products of standard Borel spaces Xv , Ew ,

3. the causal mechanism f : X × E → X is a measurable function,

4. the exogenous distribution P(EW ) =
⊗

w∈W P(Ew ) is a product of probability
measures.
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Structural Causal Models ‘on Standard Borel Spaces’ III

Theorem (Markov property, Forré and Mooij (2017); Bongers et al. (2021))

Let M be an acyclic SCM with graph G , then its observational distribution P(XV ) satisfies
the d-separation Global Markov Property, i.e.

A
d
⊥
G
B |C =⇒ XA ⊥⊥

P(XV )
XB |XC

for all subsets A,B,C ⊆ V .
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Structural Causal Models ‘on Standard Borel Spaces’ IV

As a consequence, we get causal effect identification:

▶ Do-calculus, (Pearl, 2009; Forré and Mooij, 2020)

▶ Generalised adjustment formulae (Pearl, 2009; Forré and Mooij, 2020)

▶ ID algorithm (Pearl, 2009; Forré and Mooij, 2023)

and constrain-based causal discovery:

▶ LCD (Cooper, 1997; Forré and Mooij, 2023)

▶ Y-structures (Mani, 2006; Forré and Mooij, 2023)

▶ FCI (Spirtes et al., 1995; Forré and Mooij, 2023)

(provided a suitable CI test is available for the standard Borel spaces Xv ).
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From SDEs to SCMs I

Theorem (Skorokhod (1956))

On the space of càdlàg functions D(T ,R) there exists a topology J1 such that
(D(T ,R), σ(J1)) is a standard Borel space, where σ(J1) denotes the (Borel) σ-algebra
generated by J1.
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From SDEs to SCMs II

Theorem (Solution functions of SDEs)

Given probability space (Ω,F ,P), random variables ξ1, ξ2 : Ω → R, semimartingales Z1,Z2

taking values in R, and Lipschitz g1, g2 of appropriate dimension, for the SDE

D :

{
X1(t) = ξ1 +

∫ t
0 g1(s,X1(s−))dZ1(s)

X2(t) = ξ2 +
∫ t
0 g2(s,X1(s−),X2(s−))dZ2(s)

there exists measurable solution functions

f1 : R× D(T ,R) → D(T ,R)
f2 : R× D(T ,R)2 → D(T ,R)

such that X1 = f1(ξ1,Z1)

X2 = f2(ξ2,X1,Z2)

almost surely, where (X1,X2) is the solution of D.
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Dynamic Structural Causal Models I

We ‘overload’ the definition of DSCMs by Rubenstein et al. (2018):

Definition (Dynamic Structural Causal Model)

Given a time index T = [0,T ) or T = [1,T ) ∩ N for T ∈ R ∪ {∞}, a Dynamic Structural
Causal Model is an SCM

M = ⟨V0 ∪ Vp,W0 ∪Wp,X , E , f ,PE⟩ .

▶ Endogenous initial conditions/parameters V0, endogenous processes Vp

▶ Exogenous initial conditions/parameters W0, exogenous processes Wp

▶ Standard borel spaces X = R|V0| × D(T ,R)|Vp | and E = R|W0| × D(T ,R)|Wp |

▶ Structural equations f (that can contain solution functions of an SDE)

▶ Exogenous distribution PE = P(EW0)⊗ P(ZWp) (that factorizes over W0 ∪Wp)
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Dynamic Structural Causal Models II

For the semimartingale SDE with g1, g2, g3 Lipschitz

D :


X1(t) = ξ1 +

∫ t
0 g1(s,X1(s−))dZ1(s)

X2(t) = ξ2 +
∫ t
0 g2(s,X1(s−),X2(s−))dZ2(s)

X3(t) = ξ3 +
∫ t
0 g3(s,X2(s−),X3(s−))dZ3(s)

there exist solution functions f1, f2, f3, from which we can construct DSCM MD:

▶ endogenous V0 = {ξ1, ξ2, ξ3}, Vp = {X1,X2,X3}
▶ exogenous W0 = {E1,E2,E3}, Wp = {Z1,Z2,Z3}
▶ exogenous distribution P(E1)⊗ P(E2)⊗ P(E3)⊗ P(Z1)⊗ P(Z2)⊗ P(Z3)
▶ structural equations:

ξ1 = E1, X1 = f1(ξ1,Z1)

ξ2 = E2, X2 = f2(ξ2,X1,Z2)

ξ3 = E3, X3 = f3(ξ3,X2,Z3)
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DSCM Markov property and do-calculus

D :


X1(t) = ξ1 +

∫ t
0 g1(s,X1(s−))dZ1(s)

X2(t) = ξ2 +
∫ t
0 g2(s,X1(s−),X2(s−))dZ2(s)

X3(t) = ξ3 +
∫ t
0 g3(s,X2(s−),X3(s−))dZ3(s)

MD :



ξ1 = E1,

ξ2 = E2,

ξ3 = E3,

X1 = f1(ξ1,Z1)

X2 = f2(ξ2,X1,Z2)

X3 = f3(ξ3,X2,Z3)

E1

E2

E3

X1

X2

X3

ξ1

ξ2

ξ3

Z1

Z2

Z3

Corollary

We now have a Markov property X1⊥d
G X3|X2 =⇒ X1⊥⊥P X3|X2, we can reason about

P(X3| do(ξ1)), etc.
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General procedure D → MD

For an arbitrary SDE D:

XVp(t) = ξVp +
∑

w∈Wp

∫ t

0
gVp ,w (s,XVp(s−))dZw (s)

1. Find topological ordering of the equations

2. Merge variables in a strongly connected component into a multidimensional variable

3. Solve the equations along the topological ordering

4. Specify the DSCM MD.

This forces the DSCM to be acyclic.

This is yet to be formalised using Simon’s causal ordering algorithm, following Blom et al.
(2021).
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Interventions on D and M I

Similar to Hansen and Sokol (2014) and Rubenstein et al. (2018), we define hard
interventions on SDEs:

Definition (Perfect intervention on D)

For intervention target I ⊆ Vp, intervention value xI ∈ D(T ,R)|I | and all v ∈ Vp:

Ddo(XI=xI ) :

{
Xv (t) = X0 +

∑
w∈Wp

∫ t
0 gv ,w (s,X (s−))dZw (s) if v /∈ I

Xv (t) = xv (t) if v ∈ I .

Definition (Perfect intervention on M)

For intervention target I ⊆ Vp, intervention value xI ∈ XI and all v ∈ Vp:

Mdo(XI=xI ) :

{
Xv = fv (XV ,EW ) if v /∈ I

Xv = xv if v ∈ I .
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Interventions on D and M II

Theorem

For I ⊆ Vp a strongly connected component of D, the following diagram commutes:

SDE

D

DSCM

MD

Intervened SDE

Ddo(XI=xI )

Intervened DSCM

(MD)do(XI=xI )

so we have
MDdo(XI=xI )

= (MD)do(XI=xI ).
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From DBNs to DSCMs

Theorem (Solution functions of DBNs)

Given the following Dynamic Bayesian Network:

D :

{
P(X (t)|{X (s) : s < t})
P(Y (t)|{Y (s),X (s) : s < t})

there exists a DSCM

MD :


X = fX (ZX )

Y = fY (X ,ZY )

P(ZX )⊗ P(ZY ).

G (D):

X1 X2 X3
. . .

Y1 Y2 Y3
. . .

=⇒ G (MD):
XZX

YZY
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Discussion

Refinements compared with Rubenstein et al. (2018):

▶ Allow for stochasticity: instead of ODE Do , consider SDE Ds .

▶ Trajectory spaces are standard Borel spaces, structural equations are measurable.
▶ DSCMs are now proper SCMs, allowing for causal reasoning:

▶ Graphical Markov property
▶ Do-calculus
▶ Causal discovery (CI Testing with functional data: Lundborg et al. (2022)).

Possible improvements:

▶ Use Simon’s causal ordering algorithm for automatically solving D, following Blom et al.
(2021).

▶ Let SDEs be structural equations for allow for interventions Mdo(Xi=xi ) within a
strongly connected component. Requires a pathwise stochastic integration theory, like
rough path theory, or Itô-Föllmer integration.
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